skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1812064

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The map is a weak equivalence. 
    more » « less
  2. Let p ∈ Z p\in {\mathbb {Z}} be an odd prime. We show that the fiber sequence for the cyclotomic trace of the sphere spectrum S {\mathbb {S}} admits an “eigensplitting” that generalizes known splittings on K K -theory and T C TC . We identify the summands in the fiber as the covers of Z p {\mathbb {Z}}_{p} -Anderson duals of summands in the K ( 1 ) K(1) -localized algebraic K K -theory of Z {\mathbb {Z}} . Analogous results hold for the ring Z {\mathbb {Z}} where we prove that the K ( 1 ) K(1) -localized fiber sequence is self-dual for Z p {\mathbb {Z}}_{p} -Anderson duality, with the duality permuting the summands by i ↦ p − i i\mapsto p-i (indexed mod p − 1 p-1 ). We explain an intrinsic characterization of the summand we call Z Z in the splitting T C ( Z ) p ∧ ≃ j ∨ Σ j ′ ∨ Z TC({\mathbb {Z}})^{\wedge }_{p}\simeq j \vee \Sigma j’\vee Z in terms of units in the p p -cyclotomic tower of Q p {\mathbb {Q}}_{p} . 
    more » « less
  3. Balchin, S.; Barnes, D.; Kędziorek, M.; Szymik, M. (Ed.)
    For an equivariant commutative ring spectrum R, \pi_0 R has algebraic structure reflecting the presence of both additive transfers and multiplicative norms. The additive structure gives rise to a Mackey functor and the multiplicative structure yields the additional structure of a Tambara functor. If R is an N_\infty ring spectrum in the category of genuine G-spectra, then all possible additive transfers are present and \pi_0 R has the structure of an incomplete Tambara functor. However, if R is an N_\infty ring spectrum in a category of incomplete G-spectra, the situation is more subtle. In this chapter, we study the algebraic theory of Tambara structures on incomplete Mackey functors, which we call bi-incomplete Tambara functors. Just as incomplete Tambara functors have compatibility conditions that control which systems of norms are possible, bi-incomplete Tambara functors have algebraic constraints arising from the possible interactions of transfers and norms. We give a complete description of the possible interactions between the additive and multiplicative structures. 
    more » « less
  4. Let p∈Z be an odd prime. We prove a spectral version of Tate–Poitou duality for the algebraic K-theory spectra of number rings with p inverted. This identifies the homotopy type of the fiber of the cyclotomic trace K(OF)∧p→TC(OF)∧p after taking a suitably connective cover. As an application, we identify the homotopy type at odd primes of the homotopy fiber of the cyclotomic trace for the sphere spectrum in terms of the algebraic K-theory of Z. 
    more » « less
  5. For N∞ operads O and O' such that there is an inclusion of the associated indexing systems, there is a forgetful functor from incomplete Tambara functors over O' to incomplete Tambara functors over O. Roughly speaking, this functor forgets the norms in O' that are not present in O. The forgetful functor has both a left and a right adjoint; the left adjoint is an operadic tensor product, but the right adjoint is more mysterious. We explicitly compute the right adjoint for finite cyclic groups of prime order. 
    more » « less