skip to main content


Title: A multi-domain shear-stress dependent diffusive model of cell transport-aided dialysis: analysis and simulation

Kidney dialysis is the most widespread treatment method for end-stage renal disease, a debilitating health condition common in industrialized societies. While ubiquitous, kidney dialysis suffers from an inability to remove larger toxins, resulting in a gradual buildup of these toxins in dialysis patients, ultimately leading to further health complications. To improve dialysis, hollow fibers incorporating a cell-monolayer with cultured kidney cells have been proposed; however, the design of such a fiber is nontrivial. In particular, the effects of fluid wall-shear stress have an important influence on the ability of the cell layer to transport toxins. In the present work, we introduce a model for cell-transport aided dialysis, incorporating the effects of the shear stress. We analyze the model mathematically and establish its well-posedness. We then present a series of numerical results, which suggest that a hollow-fiber design with a wavy profile may increase the efficiency of the dialysis treatment. We investigate numerically the shape of the wavy channel to maximize the toxin clearance. These results demonstrate the potential for the use of computational models in the study and advancement of renal therapies.

 
more » « less
Award ID(s):
2012686
NSF-PAR ID:
10328737
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Mathematical Biosciences and Engineering
Volume:
18
Issue:
6
ISSN:
1551-0018
Page Range / eLocation ID:
8188 to 8200
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Inadequate clearance of protein-bound uremic toxins (PBUTs) during dialysis is associated with morbidities in chronic kidney disease patients. The development of high-permeance membranes made from materials such as graphene raises the question whether they could enable the design of dialyzers with improved PBUT clearance. Here, we develop device-level and multi-compartment (body) system-level models that account for PBUT-albumin binding (specifically indoxyl sulfate andp-cresyl sulfate) and diffusive and convective transport of toxins to investigate how the overall membrane permeance (or area) and system parameters including flow rates and ultrafiltration affect PBUT clearance in hemodialysis. Our simulation results indicate that, in contrast to urea clearance, PBUT clearance in current dialyzers is mass-transfer limited: Assuming that the membrane resistance is dominant, raising PBUT permeance from 3 × 10−6to 10−5 m s−1(or equivalently, 3.3 × increase in membrane area from ~ 2 to ~ 6 m2) increases PBUT removal by 48% (from 22 to 33%, i.e., ~ 0.15 to ~ 0.22 g per session), whereas increasing dialysate flow rates or adding adsorptive species have no substantial impact on PBUT removal unless permeance is above ~ 10−5 m s−1. Our results guide the future development of membranes, dialyzers, and operational parameters that could enhance PBUT clearance and improve patient outcomes.

     
    more » « less
  2. null (Ed.)
    Drug development suffers from a lack of predictive and human-relevant in vitro models. Organ-on-chip (OOC) technology provides advanced culture capabilities to generate physiologically appropriate, human-based tissue in vitro , therefore providing a route to a predictive in vitro model. However, OOC technologies are often created at the expense of throughput, industry-standard form factors, and compatibility with state-of-the-art data collection tools. Here we present an OOC platform with advanced culture capabilities supporting a variety of human tissue models including liver, vascular, gastrointestinal, and kidney. The platform has 96 devices per industry standard plate and compatibility with contemporary high-throughput data collection tools. Specifically, we demonstrate programmable flow control over two physiologically relevant flow regimes: perfusion flow that enhances hepatic tissue function and high-shear stress flow that aligns endothelial monolayers. In addition, we integrate electrical sensors, demonstrating quantification of barrier function of primary gut colon tissue in real-time. We utilize optical access to the tissues to directly quantify renal active transport and oxygen consumption via integrated oxygen sensors. Finally, we leverage the compatibility and throughput of the platform to screen all 96 devices using high content screening (HCS) and evaluate gene expression using RNA sequencing (RNA-seq). By combining these capabilities in one platform, physiologically-relevant tissues can be generated and measured, accelerating optimization of an in vitro model, and ultimately increasing predictive accuracy of in vitro drug screening. 
    more » « less
  3. Abstract

    Conventional hemodialysis (HD) uses floor‐standing instruments and bulky dialysis cartridges containing ≈2 m2of 10 micrometer thick, tortuous‐path membranes. Portable and wearable HD systems can improve outcomes for patients with end‐stage renal disease by facilitating more frequent, longer dialysis at home, providing more physiological toxin clearance. Developing devices with these benefits requires highly efficient membranes to clear clinically relevant toxins in small formats. Here, the ability of ultrathin (<100 nm) silicon‐nitride‐based membranes to reduce the membrane area required to clear toxins by orders of magnitude is shown. Advanced fabrication methods are introduced that produce nanoporous silicon nitride membranes (NPN‐O) that are two times stronger than the original nanoporous nitride materials (NPN) and feature pore sizes appropriate for middle‐weight serum toxin removal. Single‐pass benchtop studies with NPN‐O (1.4 mm2) demonstrate the extraordinary clearance potential of these membranes (105mL min−1m−2), and their intrinsic hemocompatibility. Results of benchtop studies with nanomembranes, and 4 h dialysis of uremic rats, indicate that NPN‐O can reduce the membrane area required for hemodialysis by two orders of magnitude, suggesting the performance and robustness needed to enable small‐format hemodialysis, a milestone in the development of small‐format hemodialysis systems.

     
    more » « less
  4. Bioengineered in vitro models of the kidney offer unprecedented opportunities to better mimic the in vivo microenvironment. Kidney-on-a-chip technology reproduces 2D or 3D features which can replicate features of the tissue architecture, composition, and dynamic mechanical forces experienced by cells in vivo. Kidney cells are exposed to mechanical stimuli such as substrate stiffness, shear stress, compression, and stretch, which regulate multiple cellular functions. Incorporating mechanical stimuli in kidney-on-a-chip is critically important for recapitulating the physiological or pathological microenvironment. This review will explore approaches to applying mechanical stimuli to different cell types using kidney-on-a-chip models and how these systems are used to study kidney physiology, model disease, and screen for drug toxicity. We further discuss sensor integration into kidney-on-a-chip for monitoring cellular responses to mechanical or other pathological stimuli. We discuss the advantages, limitations, and challenges associated with incorporating mechanical stimuli in kidney-on-a-chip models for a variety of applications. Overall, this review aims to highlight the importance of mechanical stimuli and sensor integration in the design and implementation of kidney-on-a-chip devices. 
    more » « less
  5. null (Ed.)
    Red blood cells (RBCs) are subjected to recurrent changes in shear stress and oxygen tension during blood circulation. The cyclic shear stress has been identified as an important factor that alone can weaken cell mechanical deformability. The effects of cyclic hypoxia on cellular biomechanics have yet to be fully investigated. As the oxygen affinity of hemoglobin plays a key role in the biological function and mechanical performance of RBCs, the repeated transitions of hemoglobin between its R (high oxygen tension) and T (low oxygen tension) states may impact their mechanical behavior. The present study focuses on developing a novel microfluidics-based assay for characterization of the effect of cyclic hypoxia on cell biomechanics. The capability of this assay is demonstrated by a longitudinal study of individual RBCs in health and sickle cell disease subjected to cyclic hypoxia conditions of various durations and levels of low oxygen tension. Viscoelastic properties of cell membranes are extracted from tensile stretching and relaxation processes of RBCs induced by the electrodeformation technique. Results demonstrate that cyclic hypoxia alone can significantly reduce cell deformability, similar to the fatigue damage accumulated through cyclic mechanical loading. RBCs affected by sickle cell disease are less deformable (significantly higher membrane shear modulus and viscosity) than normal RBCs. The fatigue resistance of sickle RBCs to the cyclic hypoxia challenge is significantly inferior to normal RBCs, and this trend is more significant in mature erythrocytes of sickle cells. When oxygen affinity of sickle hemoglobin is enhanced by anti-sickling drug treatment of 5-hydroxymethyl-2-furfural (5-HMF), sickle RBCs show ameliorated resistance to fatigue damage induced by cyclic hypoxia. These results illustrate that an important biophysical mechanism underlying RBC senescence in which cyclic hypoxia challenge alone can lead to mechanical degradation of the RBC membrane. We envision the application of this assay can be further extended to RBCs in other blood diseases and other types of cells. 
    more » « less