skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Domain-Specific Lexical Grounding in Noisy Visual-Textual Documents
Images can give us insights into the contextual meanings of words, but current image-text grounding approaches require detailed annotations. Such granular annotation is rare, expensive, and unavailable in most domain-specific contexts. In contrast, unlabeled multi-image, multi-sentence documents are abundant. Can lexical grounding be learned from such documents, even though they have significant lexical and visual overlap? Working with a case study dataset of real estate listings, we demonstrate the challenge of distinguishing highly correlated grounded terms, such as “kitchen” and “bedroom”, and introduce metrics to assess this document similarity. We present a simple unsupervised clustering-based method that increases precision and recall beyond object detection and image tagging baselines when evaluated on labeled subsets of the dataset. The proposed method is particularly effective for local contextual meanings of a word, for example associating “granite” with countertops in the real estate dataset and with rocky landscapes in a Wikipedia dataset.  more » « less
Award ID(s):
1652536
PAR ID:
10328853
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)
Page Range / eLocation ID:
2039 to 2045
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The ability to connect language units to their referents in the physical world, referred to as grounding, is crucial to learning and understanding grounded meanings of words. While humans demonstrate fast mapping in new word learning, it remains unclear whether modern vision-language models can truly represent language with their grounded meanings, and how grounding may further bootstrap new word learning. To this end, we introduce Grounded Open Vocabulary Acquisition (GOVA) to examine grounding and bootstrapping in open-world language learning. As an initial attempt, we propose object-oriented BERT (OctoBERT), a novel visually-grounded language model by pre-training on image-text pairs highlighting grounding as an objective. Through extensive experiments and analysis, we demonstrate that OctoBERT is a more coherent and fast grounded word learner, and that the grounding ability acquired during pre-training helps the model to learn unseen words more rapidly and robustly. 
    more » « less
  2. The price of a house depends on many factors, such as its size, location, amenities, surrounding establishments, and the season in which the house is being sold, just to name a few of them. As a seller, it is absolutely essential to price the property competitively else it will not attract any buyers. This problem has given rise to multiple companies as well as past research works that try to enhance the predictability of property prices using relevant mathematical models and machine learning techniques. In this research, we investigate the usage of machine learning in predicting the house price based on related estate attributes and visual images. To this end, we collect a dataset of 2,000 houses across different cities in the United States. For each house, we annotate 14 estate attributes and five visual images for exterior, interior-living room, kitchen, bedroom, and bathroom. Following the dataset collection, different features are extracted from the input data. Furthermore, a multi-kernel regression approach is used to predict the house price from both visual cues and estate attributes. The extensive experiments demonstrate the superiority of the proposed method over the baselines. 
    more » « less
  3. This paper studies the problem of multi-person pose estimation in a bottom-up fashion. With a new and strong observation that the localization issue of the center-offset formulation can be remedied in a local-window search scheme in an ideal situation, we propose a multi-person pose estimation approach, dubbed as LOGO-CAP, by learning the LOcal-GlObal Contextual Adaptation for human Pose. Specifically, our approach learns the keypoint attraction maps (KAMs) from the local keypoints expansion maps (KEMs) in small local windows in the first step, which are subsequently treated as dynamic convolutional kernels on the keypoints-focused global heatmaps for contextual adaptation, achieving accurate multi-person pose estimation. Our method is end-to-end trainable with near real-time inference speed in a single forward pass, obtaining state-of-the-art performance on the COCO keypoint benchmark for bottom-up human pose estimation. With the COCO trained model, our method also outperforms prior arts by a large margin on the challenging OCHuman dataset. 
    more » « less
  4. Many changes in our digital corpus have been brought about by the interplay between rapid advances in digital communication and the current environment characterized by pandemics, political polarization, and social unrest. One such change is the pace with which new words enter the mass vocabulary and the frequency at which meanings, perceptions, and interpretations of existing expressions change. The current state-of-the-art algorithms do not allow for an intuitive and rigorous detection of these changes in word meanings over time. We propose a dynamic graph-theoretic approach to inferring the semantics of words and phrases (“terms”) and detecting temporal shifts. Our approach represents each term as a stochastic time-evolving set of contextual words and is a count-based distributional semantic model in nature. We use local clustering techniques to assess the structural changes in a given word’s contextual words. We demonstrate the efficacy of our method by investigating the changes in the semantics of the phrase “Chinavirus”. We conclude that the term took on a much more pejorative meaning when the White House used the term in the second half of March 2020, although the effect appears to have been temporary. We make both the dataset and the code used to generate this paper’s results available. 
    more » « less
  5. Dense document embeddings are central to neural retrieval. The dominant paradigm is to train and construct embeddings by running encoders directly on individual documents. In this work, we argue that these embeddings, while effective, are implicitly out-of-context for targeted use cases of retrieval, and that a contextualized document embedding should take into account both the document and neighboring documents in context - analogous to contextualized word embeddings. We propose two complementary methods for contextualized document embeddings: first, an alternative contrastive learning objective that explicitly incorporates the document neighbors into the intra-batch contextual loss; second, a new contextual architecture that explicitly encodes neighbor document information into the encoded representation. Results show that both methods achieve better performance than biencoders in several settings, with differences especially pronounced out-of-domain. We achieve state-of-the-art results on the MTEB benchmark with no hard negative mining, score distillation, dataset-specific instructions, intra-GPU example-sharing, or extremely large batch sizes. Our method can be applied to improve performance on any contrastive learning dataset and any biencoder. 
    more » « less