skip to main content


Title: Parasite spillover to native hosts from more tolerant, supershedding invasive hosts: Implications for management
Abstract

Introduced hosts are capable of introducing parasite species and altering the abundance of parasites that are already present in native hosts, but few studies have compared the tolerances of native and invasive hosts to introduced parasites or identified the traits of introduced hosts that make them supershedders of non‐native parasites.

Here, we compare the effects of a nematodeAplectana hamatospiculathat is native to Cuba but appears to be introduced to Florida on the native Floridian treefrog,Hyla femoralis, and on the Cuban treefrog (CTF),Osteopilus septentrionalis. We were particularly interested in CTFs because their introduction to Florida has led to reported declines of native treefrogs.

In the laboratory, infection withA. hamatospiculacaused a greater loss in body mass ofH. femoralisthan CTFs despiteH. femoralisshedding fewer total worms in their faeces than CTFs. Field collections of CTFs,H. femoralis, and another native Floridian treefrog,H.squirella(Squirrel treefrog) from Tampa, FL also showed that CTFs shed more larval worms in their faeces than both native frogs when controlling for body size. Hence, the non‐native CTF is a supershedder of this non‐native parasite that is spilling over to less tolerant native treefrogs.

Any conservation intervention to reduce the effects of CTFs on native treefrogs would benefit from knowing the traits that contribute to the invasive host being a supershedder of this parasite. Hence, we conducted necropsies on 330 CTFs to determine how host sex and body size affect the abundance ofA. hamatospicula, and two other common parasites in this species (acuariid nematodes and trematode metacercariae).

There was a significant linear increase inA. hamatospiculaand encysted acuariids with CTF body size, but there was no detectable relationship between host body size and the intensity of metacercariae. Female CTFs were bigger, lived longer and, on average, had moreA. hamatospiculathan male CTFs.

Synthesis and applications. These results of the study suggest that there is parasite spillover from the invasive Cuban treefrog (CTF) to native treefrogs in Florida. Additionally, at least some of the adverse effects of CTFs on native treefrogs could be caused by the introduction and amplification of this introduced parasite, and female and larger CTFs seem to be amplifying these infections more than males and smaller CTFs, respectively, suggesting that management could benefit from targeting these individuals.

 
more » « less
Award ID(s):
1947573 2017785 1754868 2109293
NSF-PAR ID:
10447349
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley-Blackwell
Date Published:
Journal Name:
Journal of Applied Ecology
Volume:
59
Issue:
1
ISSN:
0021-8901
Format(s):
Medium: X Size: p. 39-51
Size(s):
["p. 39-51"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Identifying the mechanisms underlying biological invasions can inform the management of invasive species. The enemy release hypothesis (ERH) suggests that invasive species have a competitive advantage in their introduced range because they leave behind many of their predators and parasites from their native range, allowing them to shift resources from defences to growth, reproduction and dispersal. Many studies have demonstrated that invasive species have fewer parasites than their native counterparts, but few studies have tested whether the loss of these natural enemies appears to be a primary driver of the invasion process.

    To test the ERH, we conducted a mark–recapture study in which we used an anthelmintic drug to successfully reduce parasitic worms in invasive Cuban treefrogsOsteopilus septentrionalisand native treefrogs (Hylaspp.) at half of 12 wetlands, marking nearly 4,200 frogs. If the ERH is supported, we would expect that treating for parasitic worms would have a greater benefit to native than invasive hosts.

    Growth and survival rates of invasive and native treefrogs responded similarly to the anthelmintic treatment, suggesting that the Cuban treefrog's release from parasitic worms does not appear to significantly contribute to its invasiveness in established areas. Instead, it appears that the overall faster rates of growth and maturation, higher survival rates and larger body sizes of Cuban treefrogs that we observed may contribute to their expansion and proliferation.

    Synthesis and applications. Although Cuban treefrogs have a lower diversity of parasitic worms in their invasive than native range, this does not appear to significantly contribute to their invasion success in areas where they have been established for more than 20 years. This suggests that any manipulation of parasites in invasive or native hosts would not be an effective method of controlling Cuban treefrogs or reducing their impacts. Further research into other hypotheses is needed to explain the Cuban treefrog's success and help guide management actions to reduce their spread and negative impacts. Our study demonstrates that enemy release may not be a primary driver of invasiveness, highlighting the need for more experimental tests of the enemy release hypothesis to examine its generality.

     
    more » « less
  2. null (Ed.)
    Introduced species pose a threat to biodiversity, and ecological and physiological factors are important in determining whether an introduced species becomes successfully established in a new region. Locomotor performance is one such factor that can influence the abundance and distribution of an introduced species. We investigated the effects of temperature and parasitism by the intestinal nematode Aplectana hamatospicula on the maximum jump distance and endurance in one invasive and two native treefrogs in Florida, USA. We collected frogs from the wild, estimated their parasite loads, and tested their locomotor performance at three temperatures. Contrary to expectations, invasive Cuban treefrogs (Osteopilus septentrionalis), which are adapted to a warmer climate in the Caribbean, outperformed pinewoods treefrogs (Hyla femoralis) and squirrel treefrogs (H. squirella) at each temperature, even when controlling for body size differences. In all three species, maximum jump distance was positively related to temperature, and this relationship was stronger for larger frogs. Parasites influenced both the maximum jump distance and endurance of frogs. In all three species, larger frogs jumped farther maximum distances than smaller frogs, but this relationship was stronger when frogs had lower, rather than higher, parasite loads. Parasitism had little effect on endurance in invasive frogs, but it tended to decrease the endurance of native frogs at high temperatures. Furthermore, at low temperatures, the lengths of consecutive jumps of infected native frogs tended to increase, suggesting that parasites limited the distances of initial jumps. Effects of temperature and parasites on the locomotor performance of frogs could influence their abilities to forage, escape predators, and disperse. The tremendous locomotor performance of O. septentrionalis, which is maintained across temperatures and parasite loads, likely contributes to the invasion success of this species. 
    more » « less
  3. Abstract

    Species invasion and redistribution, driven by climate change and other anthropogenic influences, alter global biodiversity patterns and disrupt ecosystems. As host species move, they can bring their associated parasites with them, potentially infecting resident species, or leave their parasites behind, enhancing their competitive ability in their new ranges. General rules to predict why invading hosts will retain some parasites but not others are relatively unexplored, and the potential predictors are numerous, ranging from parasite life history to host community composition.

    In this study, we focus on the parasite retention process during host invasion. We used the Global Mammal Parasite Database to identify terrestrial mammal hosts sampled for parasites in both native and non‐native ranges. We then selected predictors likely to play a role in parasite retention, such as parasite type, parasite specialism, species composition of the invaded community, and the invading host's phylogenetic or trait‐based similarity to the new community.

    We modelled parasite retention using boosted regression trees, with a suite of 25 predictors describing parasite and host community traits. We further tested the generality of our predictions by cross‐validating models on data for other hosts and invasion locations.

    Our results show that parasite retention is nonrandom and predictable across hosts and invasions. It is broadly shaped by parasite type and parasite specialism, with more specialist parasites that infect many closely related hosts more likely to be retained. This trend is pronounced across parasite types; helminths, however, show a more uniform likelihood of retention regardless of specificity.

    Overall, we see that most parasites are not retained (11% retained), meaning many invasive species may benefit from enemy release. However, species redistribution does have the potential to spread parasites, and this also has great relevance to understanding conservation implications of species invasions. We see that specialist parasites are most likely to coinvade with their hosts, which suggests that species closely related to the invasive hosts are most likely to be affected by parasite spillover.

     
    more » « less
  4. Abstract Metacercariae of the genus Posthodiplostomum are often recorded in freshwater fish hosts. While the diversity and taxonomy of this genus are receiving increasing attention in molecular phylogenetic studies, available data remain geographically biased. Most molecular studies of Posthodiplostomum and morphologically similar (neascus) worms originate in North America and Europe and Asia (more than 60% of DNA sequences are from USA and Canada), with few data currently available from the Neotropics, where high host diversity suggests high and under-sampled parasite diversity. In this study, we report molecular and morphological data from metacercariae of Posthodiplostomum in fish in Puerto Rico, where only a single species has been previously reported. Partial sequences of cytochrome c oxidase subunit 1 from metacercariae from Dajaus monticola (native to Puerto Rico) and the introduced fishes Poecilia reticulata , Parachromis managuensis , Lepomis macrochirus and Micropterus salmoides revealed 7 genetically distinct species-level lineages, of which 4 were novel. We report novel molecular life-cycle linkages in Posthodiplostomum macrocotyle (metacercariae in muscle of the cichlid Pa. managuensis ), a species previously known only from adults in birds from South America; and in Posthodiplostomum sp. 23 (metacercariae in poeciliids), which has recently been found in Ardea herodias in Georgia, USA. We also report the first molecular data from Posthodiplostomum sp. 8 in M. salmoides in the Caribbean. Metacercariae of most species were morphologically distinguished and all displayed narrow specificity for fish hosts, with no indication of parasite sharing among introduced and native fishes. 
    more » « less
  5. Abstract

    Co‐parasitism is ubiquitous and has important consequences for the ecology and evolution of wild host populations. Studies of parasite co‐infections remain limited in scope, with few experimental tests of the fitness consequences of multiple parasites, especially in natural populations.

    We measured the separate and combined effects ofPhilornis seguyinest flies and shiny cowbirdsMolothrus bonariensison the fitness of a shared host, the chalk‐browed mockingbird (Mimus saturninus) in Argentina.

    Using a two‐factor experimental approach, we manipulated the presence of nest flies and cowbirds in mockingbird nests and assessed their effects on mockingbird haemoglobin levels, begging and provisioning rates, body size, and fledging success. We also monitored rates of nest predation in relation to parasitism by flies and cowbirds.

    Nest flies reduced the haemoglobin concentration, body size, and fledging success of mockingbirds, likely because mockingbirds did not compensate for parasitism by begging more or feeding their nestlings more. Cowbirds also reduced the fledging success of mockingbirds, even though they had no detectable effect on haemoglobin or body size. Nests with cowbirds, which beg more than mockingbirds, attracted more nest predators. There was no significant interaction between the effects of flies and cowbirds on any component of mockingbird fitness. The combined effects of nest flies and cowbirds were strictly additive.

    In summary, we show that nest flies and cowbirds both reduce host fitness, but do not have interactive effects in co‐parasitized nests. Our results further suggest that predators exacerbate the effects of nest flies and cowbirds on their hosts. Our study shows that the fitness consequences of co‐parasitism are complex, especially in the context of community‐level interactions.

     
    more » « less