skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: NMR Structure and Biophysical Characterization of Thermophilic Single-Stranded DNA Binding Protein from Sulfolobus Solfataricus
Proteins from Sulfolobus solfataricus (S. solfataricus), an extremophile, are active even at high temperatures. The single-stranded DNA (ssDNA) binding protein of S. solfataricus (SsoSSB) is overexpressed to protect ssDNA during DNA metabolism. Although SsoSSB has the potential to be applied in various areas, its structural and ssDNA binding properties at high temperatures have not been studied. We present the solution structure, backbone dynamics, and ssDNA binding properties of SsoSSB at 50 °C. The overall structure is consistent with the structures previously studied at room temperature. However, the loop between the first two β sheets, which is flexible and is expected to undergo conformational change upon ssDNA binding, shows a difference from the ssDNA bound structure. The ssDNA binding ability was maintained at high temperature, but different interactions were observed depending on the temperature. Backbone dynamics at high temperature showed that the rigidity of the structured region was well maintained. The investigation of an N-terminal deletion mutant revealed that it is important for maintaining thermostability, structure, and ssDNA binding ability. The structural and dynamic properties of SsoSSB observed at high temperature can provide information on the behavior of proteins in thermophiles at the molecular level and guide the development of new experimental techniques.  more » « less
Award ID(s):
2051595 1902076
PAR ID:
10328951
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
International Journal of Molecular Sciences
Volume:
23
Issue:
6
ISSN:
1422-0067
Page Range / eLocation ID:
3099
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Sandri-Goldin, Rozanne M. (Ed.)
    ABSTRACT Most icosahedral viruses condense their genomes into volumetrically constrained capsids. However, concurrent genome biosynthesis and packaging are specific to single-stranded DNA (ssDNA) viruses. ssDNA genome packaging combines elements found in both double-stranded DNA (dsDNA) and ssRNA systems. Similar to dsDNA viruses, the genome is packaged into a preformed capsid. Like ssRNA viruses, there are numerous capsid-genome associations. In ssDNA microviruses, the DNA-binding protein J guides the genome between 60 icosahedrally ordered DNA binding pockets. It also partially neutralizes the DNA’s negative phosphate backbone. ϕX174-related microviruses, such as G4 and α3, have J proteins that differ in length and charge organization. This suggests that interchanging J proteins could alter the path used to guide DNA in the capsid. Previously, a ϕXG4J chimera, in which the ϕX174 J gene was replaced with the G4 gene, was characterized. It displayed lethal packaging defects, which resulted in procapsids being removed from productive assembly. Here, we report the characterization of another inviable chimera, ϕXα3J. Unlike ϕXG4J, ϕXα3J efficiently packaged DNA but produced noninfectious particles. These particles displayed a reduced ability to attach to host cells, suggesting that internal DNA organization could distort the capsid’s outer surface. Mutations that restored viability altered J-coat protein contact sites. These results provide evidence that the organization of ssDNA can affect both packaging and postpackaging phenomena. IMPORTANCE ssDNA viruses utilize icosahedrally ordered protein-nucleic acids interactions to guide and organize their genomes into preformed shells. As previously demonstrated, chaotic genome-capsid associations can inhibit ϕX174 packaging by destabilizing packaging complexes. However, the consequences of poorly organized genomes may extend beyond the packaging reaction. As demonstrated herein, it can lead to uninfectious packaged particles. Thus, ssDNA genomes should be considered an integral and structural virion component, affecting the properties of the entire particle, which includes the capsid’s outer surface. 
    more » « less
  2. Abstract Bacteriophage T4 gene 32 protein (gp32) is a model single-stranded DNA (ssDNA) binding protein, essential for DNA replication. gp32 forms cooperative filaments on ssDNA through interprotein interactions between its core and N-terminus. However, detailed understanding of gp32 filament structure and organization remains incomplete, particularly for longer, biologically-relevant DNA lengths. Moreover, it is unclear how these tightly-bound filaments dissociate from ssDNA during complementary strand synthesis. We use optical tweezers and atomic force microscopy to probe the structure and binding dynamics of gp32 on long (∼8 knt) ssDNA substrates. We find that cooperative binding of gp32 rigidifies ssDNA while also reducing its contour length, consistent with the ssDNA helically winding around the gp32 filament. While measured rates of gp32 binding and dissociation indicate nM binding affinity, at ∼1000-fold higher protein concentrations gp32 continues to bind into and restructure the gp32–ssDNA filament, leading to an increase in its helical pitch and elongation of the substrate. Furthermore, the oversaturated gp32–ssDNA filament becomes progressively unwound and unstable as observed by the appearance of a rapid, noncooperative protein dissociation phase not seen at lower complex saturation, suggesting a possible mechanism for prompt removal of gp32 from the overcrowded ssDNA in front of the polymerase during replication. 
    more » « less
  3. Abstract The CST complex (CTC1-STN1-TEN1) has been shown to inhibit telomerase extension of the G-strand of telomeres and facilitate the switch to C-strand synthesis by DNA polymerase alpha-primase (pol α-primase). Recently the structure of human CST was solved by cryo-EM, allowing the design of mutant proteins defective in telomeric ssDNA binding and prompting the reexamination of CST inhibition of telomerase. The previous proposal that human CST inhibits telomerase by sequestration of the DNA primer was tested with a series of DNA-binding mutants of CST and modeled by a competitive binding simulation. The DNA-binding mutants had substantially reduced ability to inhibit telomerase, as predicted from their reduced affinity for telomeric DNA. These results provide strong support for the previous primer sequestration model. We then tested whether addition of CST to an ongoing processive telomerase reaction would terminate DNA extension. Pulse-chase telomerase reactions with addition of either wild-type CST or DNA-binding mutants showed that CST has no detectable ability to terminate ongoing telomerase extension in vitro. The same lack of inhibition was observed with or without pol α-primase bound to CST. These results suggest how the switch from telomerase extension to C-strand synthesis may occur. 
    more » « less
  4. Bacteria use specialized proteins, like transcription factors, to rapidly control metal ion balance. CueR is a Gram‐negative bacterial copper regulator. The structure ofE. coliCueR complexed with Cu(I) and DNA was published, since then many studies have shed light on its function. However,P. aeruginosaCueR, which shows high sequence similarity toE. coliCueR, has been less studied. Here, we applied room‐temperature electron paramagnetic resonance (EPR) measurements to explore changes in dynamics ofP. aeruginosaCueR in dependency of copper concentrations and interaction with two different DNA promoter regions. We showed thatP. aeruginosaCueR is less dynamic than theE. coliCueR protein and exhibits much higher sensitivity to DNA binding as compared to itsE. coliCueR homolog. Moreover, a difference in dynamical behavior was observed whenP. aeruginosaCueR binds to thecopZ2DNA promoter sequence compared to themexPQ‐opmEpromoter sequence. Such dynamical differences may affect the expression levels of CopZ2 and MexPQ‐OpmE proteins inP. aeruginosa. Overall, such comparative measurements of protein‐DNA complexes derived from different bacterial systems reveal insights about how structural and dynamical differences between two highly homologous proteins lead to quite different DNA sequence‐recognition and mechanistic properties. 
    more » « less
  5. Archaeal group II chaperonins, also known as heat shock proteins (HSPs), are abundantly expressed in Sulfolobales. HSPα and HSPβ gene expression is upregulated during thermal shock. HSPs form large 18-mer complexes that assist in folding nascent proteins and protecting resident proteins during thermal stress. Engineered HSPs have been designed for industrial applications. Since temperature flux in the geothermal habitats of Sulfolobales impacts intracellular temperature, it follows that HSPs have developed thermotolerance. However, despite the low pH (i.e., pH < 4) typical for these habitats, intracellular pH in Sulfolobales is maintained at ~6.5. Therefore, it is not presumed that HSPs have evolved acid-tolerance. To test tolerance to low pH, HSPs were studied at various pH and temperature values. Both circular dichroism and intrinsic fluorescence indicate that HSPα and HSPβ retain structural integrity at neutral pH over a wide range of temperatures. Structural integrity is compromised for all HSPs at ultra-low pH (e.g., pH 2). Secondary structures in HSPs are resilient under mildly acidic conditions (pH 4) but Anilino naphthalene 8-sulfonate binding shows shifts in tertiary structure at lower pH. Trypsin digestion shows that the HSPβ-coh backbone is the most flexible and HSPβ is the most resilient. Overall, results suggest that HSPα and HSPβ exhibit greater thermostability than HSPβ-coh and that there are limits to HSP acid-tolerance. Molecular dynamics (MD) simulations complement the wet lab data. Specifically, MD suggests that the HSPβ secondary structure is the most stable. Also, despite similarities in pH- and temperature-dependent behavior, there are clear differences in how each HSP subtype is perturbed. 
    more » « less