skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Development of a pulsed, variable-energy positron beam for atomic scale defect studies
Positron annihilation spectroscopy provides a sensitive means of non-destructive characterization of materials, capable of probing single atom vacancies in solids with 10 −7 sensitivity. We detail here the development of a magnetically guided, variable energy, pulsed positron beam designed to conduct depth-dependent defect studies in metals, semiconductors, and dielectrics, which will be the first of its kind in the United States. The design of the target stage provides capabilities for measurements during in situ annealing up to 800 °C and incorporates a new approach to minimize the background due to energetic backscattered positrons. The developed beam at Bowling Green State University provides a powerful tool for characterization of thin films, devices, and ion irradiated materials.  more » « less
Award ID(s):
2005064
PAR ID:
10329110
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Review of Scientific Instruments
Volume:
93
Issue:
4
ISSN:
0034-6748
Page Range / eLocation ID:
043903
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Plasma wakefield acceleration in the nonlinear blowout regime has achieved marked milestones in electron beam acceleration, demonstrating high acceleration gradients and energy efficiency while preserving excellent beam quality. However, this regime is deemed unsuitable for achieving positron acceleration of comparable results, which is vital for future compact electron–positron colliders. In this article, we find that an intense positron beam loaded at the back of beam-driven blowout cavity can self-consistently induce the focusing field and flatten the longitudinal wakefield, leading to stable, high-efficiency, and high-quality positron acceleration. This is achieved through the formation of an on-axis electron filament induced by positron beam load, which shapes the plasma wakefield in a distinct way compared to electron beam load in the blowout regime. Via a nonlinear analytic model and numerical simulations, we explain the novel beam loading effects of the interaction between the on-axis filament and the blowout cavity. High-fidelity simulations show that a high-charge positron beam can be accelerated with >20% energy transfer efficiency, ~1% energy spread, and ~1 mm·mrad normalized emittance, while considerably depleting the energy of the drive beam. The concept can also be extended to simultaneous acceleration of electron and positron beams and high transformer ratio positron acceleration as well. This development offers a new route for the application of plasma wakefield acceleration into particle physics. 
    more » « less
  2. Abstract Positron annihilation spectroscopy provides a sensitive toolset for defect characterization. In beam based studies of single-layer targets, the form of implantation profiles is well established, depending on the kinetic energy and angle of incident positrons relative to the target surface and the density and average atomic number of the target. For multilayer systems, the difference in density and across the layers makes derivation of an analytical form difficult. To date, the determination of positron stopping profiles in multilayer targets has primarily involved Monte Carlo simulations. We present here an alternative approach that estimates the energy distribution dN/dE of those positrons transmitted past each layer boundary, by fitting the remaining tail of the stopping profile after each layer with a basis set comprised of calculated stopping profiles in the same material they are transmitted through. The stopping profile in the next layer is then found by summing a series of stopping profiles in the new medium in proportion to the determined distribution dN/dE. The results of our model are compared with simulation results in a system of alternating layers of Al and Au and find reasonable agreement in the predicted profile and excellent agreement in the predicted mean implantation depth. Lastly, we derived a simple formula-based approach for the calculation of the mean implantation depth in two-layer systems that provides results in excellent agreement with the full model. 
    more » « less
  3. Slow positrons are generated from a 22Na source and cone-shaped solid neon moderator and extracted as a magnetically guided beam. Measurements are presented for the mean parallel and perpendicular energies and the radial distribution of the beam particles. Over a distance of 7 m, where the magnetic field B varies from 0.005 to 0.12 T, the beam transport is found to be adiabatic for mean energies up to 50 eV. Non-adiabatic effects, evidenced by an increase in energy in motion perpendicular to B, are observed at larger transport energies. The implications of these observations for buffer-gas positron traps and other positron-transport beamlines are discussed. 
    more » « less
  4. A bstract A new beam dump experiment that utilizes the beam of future high energy electron-positron colliders could be an excellent avenue to search for dark sector particles due to its unprecedented high energy and intensity. We consider heavy neutral leptons (HNLs) as a specific example to demonstrate the sensitivity of searches for dark sector particles at future electron-positron collider beam dump experiments. This includes the study of the reach at the International Linear Collider (ILC), the Cool Copper Collider (C 3 ), and the Compact Linear Collider (CLIC). We comprehensively examine the HNL production and detector acceptance at these electron beam dump experiments. We show that these experiments will probe regions of HNL parameter space, not yet probed by past experiments, as well as by future approved experiments. Our study also motivates a more detailed analysis of heavy meson productions in high-energy electron-nucleon collisions in thick targets. 
    more » « less
  5. We outline an experimental technique for measuring the degree of polarization of a positron beam using an optically pumped, spin-polarized Rb target. The technique is based on the production and measurement of the ortho- and para-positronium fractions through positron collisions with the Rb atoms as a function of their polarization. Using realistic estimates for the cross sections and experimental parameters involved, we estimate that a polarization measurement with an uncertainty of 3% of the measured value can be achieved in an hour. 
    more » « less