Wearable sweat analysis possesses significant potential for transforming personalized and precision medicine, by capturing the longitudinal profiles of a broad spectrum of biomarker molecules that are informative of our body’s dynamic chemistry. However, the lack of established physiological criteria to provide personalized feedback, based on sweat biomarker readings, has prevented the translation of wearable sweat-based bioanalytical technologies into health and wellness monitoring applications. Accordingly, scalable sweat sampling tools are required to facilitate large-scale and longitudinal clinical studies focusing on interpreting sweat biomarker readings. However, conventional sweat induction-collection tools are bulky and require multi-step and manual operations. Accordingly, here, we devise a sweat sampling patch, which can be deployed for autonomous diurnal sweat induction-collection. The core of this patch is an addressable array of miniaturized and coupled iontophoresis/microfluidic interfaces that can be activated on- demand or at scheduled time-points to induce/collect sufficient sweat samples for analysis. The iontophoresis interface was designed following an introduced design space centering on sufficient sweat secretory agonist delivery at safe current levels. The microfluidic interface was fabricated following a simple, rapid, and low-cost fabrication scheme. To achieve autonomous operation, these interfaces were extended into an array format and coupled with a custom-developed flexible and wireless circuit board. To inform utility, periodically induced/collected sweat samples of an individual were analyzed in relation to meal intake.
more »
« less
An autonomous wearable system for diurnal sweat biomarker data acquisition
To track dynamically varying and physiologically relevant biomarker profiles in sweat, autonomous wearable platforms are required to periodically sample and analyze sweat with minimal or no user intervention. Previously reported sweat sensors are functionally limited to capturing biomarker information at one time-point/period, thereby necessitating repeated user intervention to increase the temporal granularity of biomarker data. Accordingly, we present a compact multi-compartment wearable system, where each compartment can be activated to autonomously induce/modulate sweat secretion ( via iontophoretic actuation) and analyze sweat at set time points. This system was developed following a hybrid-flex design and a vertical integration scheme—integrating the required functional modules: miniaturized iontophoresis interfaces, adhesive thin film microfluidic-sensing module, and control/readout electronics. The system was deployed in a human subject study to track the diurnal variation of sweat glucose levels in relation to the daily food intake. The demonstrated autonomous operation for diurnal sweat biomarker data acquisition illustrates the system's suitability for large-scale and longitudinal personal health monitoring applications.
more »
« less
- Award ID(s):
- 1722857
- PAR ID:
- 10329112
- Date Published:
- Journal Name:
- Lab on a Chip
- Volume:
- 20
- Issue:
- 24
- ISSN:
- 1473-0197
- Page Range / eLocation ID:
- 4582 to 4591
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Wearable technologies for personalized monitoring require sensors that track biomarkers often present at low levels. Cortisol—a key stress biomarker—is present in sweat at low nanomolar concentrations. Previous wearable sensing systems are limited to analytes in the micromolar-millimolar ranges. To overcome this and other limitations, we developed a flexible field-effect transistor (FET) biosensor array that exploits a previously unreported cortisol aptamer coupled to nanometer-thin-film In 2 O 3 FETs. Cortisol levels were determined via molecular recognition by aptamers where binding was transduced to electrical signals on FETs. The physiological relevance of cortisol as a stress biomarker was demonstrated by tracking salivary cortisol levels in participants in a Trier Social Stress Test and establishing correlations between cortisol in diurnal saliva and sweat samples. These correlations motivated the development and on-body validation of an aptamer-FET array–based smartwatch equipped with a custom, multichannel, self-referencing, and autonomous source measurement unit enabling seamless, real-time cortisol sweat sensing.more » « less
-
Abstract Active biofluid management is central to the realization of wearable bioanalytical platforms that are poised to autonomously provide frequent, real-time, and accurate measures of biomarkers in epidermally-retrievable biofluids (e.g., sweat). Accordingly, here, a programmable epidermal microfluidic valving system is devised, which is capable of biofluid sampling, routing, and compartmentalization for biomarker analysis. At its core, the system is a network of individually-addressable microheater-controlled thermo-responsive hydrogel valves, augmented with a pressure regulation mechanism to accommodate pressure built-up, when interfacing sweat glands. The active biofluid control achieved by this system is harnessed to create unprecedented wearable bioanalytical capabilities at both the sensor level (decoupling the confounding influence of flow rate variability on sensor response) and the system level (facilitating context-based sensor selection/protection). Through integration with a wireless flexible printed circuit board and seamless bilateral communication with consumer electronics (e.g., smartwatch), contextually-relevant (scheduled/on-demand) on-body biomarker data acquisition/display was achieved.more » « less
-
Abstract Precision healthcare relies upon ubiquitous biofeedback to optimize therapy individually for nuanced and dynamic needs. However, grand challenges reside in the lack of soft, highly personalizable monitors that are scalable in manufacturing and reversibly interchangeable upon the evolution of needs. Herein, a customizable soft wearable platform is presented that can seamlessly integrate diverse functional modules, including physical and biochemical sensors, stimulators, and energy storage devices, tailored to various health monitoring scenarios, while can self‐repair after certain mechanical damage. The platform supports versatile physiological sensing and therapeutic intervention due to its compatibility with wide‐ranging functional nanomaterials. A bilayer microporous foam embedded in the gel improves sweat management for comfortable and reliable on‐body biomarker monitoring. Furthermore, flexible self‐healing zinc‐air batteries using ion gel electrolytes provide opportunities for self‐powered, closed‐loop systems. On‐body demonstrations validate the platform's capability to monitor physiological and metabolic states under real‐world conditions. This work provides a scalable and adaptable materials‐based solution for real‐time personalized health monitoring, advancing wearable bioelectronics to meet evolving healthcare demands.more » « less
-
Skin-interfaced wearable systems with integrated microfluidic structures and sensing capabilities offer powerful platforms for monitoring the signals arising from natural physiological processes. This paper introduces a set of strategies, processing approaches, and microfluidic designs that harness recent advances in additive manufacturing [three-dimensional (3D) printing] to establish a unique class of epidermal microfluidic (“epifluidic”) devices. A 3D printed epifluidic platform, called a “sweatainer,” demonstrates the potential of a true 3D design space for microfluidics through the fabrication of fluidic components with previously inaccessible complex architectures. These concepts support integration of colorimetric assays to facilitate in situ biomarker analysis operating in a mode analogous to traditional epifluidic systems. The sweatainer system enables a new mode of sweat collection, termed multidraw, which facilitates the collection of multiple, independent sweat samples for either on-body or external analysis. Field studies of the sweatainer system demonstrate the practical potential of these concepts.more » « less
An official website of the United States government

