skip to main content


Title: Stochastic rectification of fast oscillations on slow manifold closures
The problems of identifying the slow component (e.g., for weather forecast initialization) and of characterizing slow–fast interactions are central to geophysical fluid dynamics. In this study, the related rectification problem of slow manifold closures is addressed when breakdown of slow-to-fast scales deterministic parameterizations occurs due to explosive emergence of fast oscillations on the slow, geostrophic motion. For such regimes, it is shown on the Lorenz 80 model that if 1) the underlying manifold provides a good approximation of the optimal nonlinear parameterization that averages out the fast variables and 2) the residual dynamics off this manifold is mainly orthogonal to it, then no memory terms are required in the Mori–Zwanzig full closure. Instead, the noise term is key to resolve, and is shown to be, in this case, well modeled by a state-independent noise, obtained by means of networks of stochastic nonlinear oscillators. This stochastic parameterization allows, in turn, for rectifying the momentum-balanced slow manifold, and for accurate recovery of the multiscale dynamics. The approach is promising to be further applied to the closure of other more complex slow–fast systems, in strongly coupled regimes.  more » « less
Award ID(s):
2108856
NSF-PAR ID:
10329145
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences of the United States of America
Volume:
118
Issue:
48
ISSN:
0027-8424
Page Range / eLocation ID:
e2113650118
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    A two‐time‐scale system involves both fast and slow dynamics. This article studies observer design for general nonlinear two‐time‐scale systems and presents two alternative nonlinear observer design approaches, one full‐order and one reduced‐order. The full‐order observer is designed by following a scheme to systematically select design parameters, so that the fast and slow observer dynamics are assigned to estimate the corresponding system modes. The reduced‐order observer is derived based on a lower dimensional model to reconstruct the slow states, along with the algebraic slow‐motion invariant manifold function to reconstruct the fast states. Through an error analysis, it is shown that the reduced‐order observer is capable of providing accurate estimation of the states for the detailed system with an exponentially decaying estimation error. In the last part of the article, the two proposed observers are designed for an anaerobic digestion process, as an illustrative example to evaluate their performance and convergence properties.

     
    more » « less
  2. We present a rigorous analysis of the transient evolution of nearly circular bilayer interfaces evolving under the thin interface limit, ε ≪ 1, of the mass preserving L2-gradient flow of the strong scaling of the functionalized Cahn–Hilliard equation. For a domain Ω ⊂ R2 we construct a bilayer manifold with boundary comprised of quasi-equilibria of the flow and a projection onto the manifold that associates functions u in an H2 tubular neighborhood of the manifold with an interface Γ embedded in Ω. The linearization of the flow about the manifold does not present a clear spectral separation of modes normal and tangential to the manifold. The dimension of the parameterization of the interfaces and the bilayer manifold controls both the normal coercivity of the manifold and the coupling between normal and tangential modes, both of which increase with this dimension. The key step in the analysis is the identification of a range of dimensions in which coercivity dominates the coupling, permitting the closure of the nonlinear estimates that establish the asymptotic stability of the manifold. Orbits originating in a thin, forward invariant, tubular neighborhood ultimately converge to an equilibrium associated to a circular interface. Projections of these orbits yield interfacial evolution equivalent at leading order to the regularized curve-lengthening motion characterized by normal motion against mean curvature, regularized by a higher order Willmore expression. The curve lengthening is driven by absorption of excess mass from the regions of Ω away from the interface, leading to high dimensional dynamics that are ill-posed in the ε → 0+ limit. 
    more » « less
  3. Simple process models and complex climate models are remarkably sensitive to the time scale of convective adjustment τ, but this parameter remains poorly constrained and understood. This study uses the linear-range slope of a semiempirical relationship between precipitation and a lower-free-tropospheric buoyancy measure BL. The BLmeasure is a function of layer-averaged moist enthalpy in the boundary layer (150-hPa-thick layer above surface), and temperature and moisture in the lower free troposphere (boundary layer top to 500 hPa). Sensitivity parameters with units of time quantify the BLresponse to its component perturbations. In moist enthalpy units, BLis more sensitive to temperature than equivalent moisture perturbations. However, column-integrated moist static energy conservation ensures that temperature and moisture are equally altered during the adjustment process. Multiple adjusted states with different temperature–moisture combinations exist; the BLsensitivity parameters govern the relationship between adjusted states, and also combine to yield a time scale of convective adjustment ~2 h. This value is comparable to τ values used in cumulus parameterization closures. Disparities in previously reported values of τ are attributed to the neglect of the temperature contribution to precipitation, and to averaging operations that include data from both precipitating and nonprecipitating regimes. A stochastic model of tropical convection demonstrates how either averaging operations or neglected environmental influences on precipitation can yield τ estimates longer than the true τ value built into the model. The analysis here culminates in construction of a precipitation closure with both moisture and temperature adjustment ( q– T closure), suitable for use in both linearized and nonlinear, intermediate-complexity models.

     
    more » « less
  4. Geophysical turbulence has a wide range of spatiotemporal scales that requires a multiscale prediction model for efficient and fast simulations. Stochastic parameterization is a class of multiscale methods that approximates the large-scale behaviors of the turbulent system without relying on scale separation. In the stochastic parameterization of unresolved subgrid-scale dynamics, there are several modeling parameters to be determined by tuning or fitting to data. We propose a strategy to estimate the modeling parameters in the stochastic parameterization of geostrophic turbulent systems. The main idea of the proposed approach is to generate data in a spatiotemporally local domain and use physical/statistical information to estimate the modeling parameters. In particular, we focus on the estimation of modeling parameters in the stochastic superparameterization, a variant of the stochastic parameterization framework, for an idealized model of synoptic-scale turbulence in the atmosphere and oceans. The test regimes considered in this study include strong and moderate turbulence with complicated patterns of waves, jets, and vortices. 
    more » « less
  5. Discovering the underlying dynamics of complex systems from data is an important practical topic. Constrained optimization algorithms are widely utilized and lead to many successes. Yet, such purely data-driven methods may bring about incorrect physics in the presence of random noise and cannot easily handle the situation with incomplete data. In this paper, a new iterative learning algorithm for complex turbulent systems with partial observations is developed that alternates between identifying model structures, recovering unobserved variables, and estimating parameters. First, a causality-based learning approach is utilized for the sparse identification of model structures, which takes into account certain physics knowledge that is pre-learned from data. It has unique advantages in coping with indirect coupling between features and is robust to stochastic noise. A practical algorithm is designed to facilitate causal inference for high-dimensional systems. Next, a systematic nonlinear stochastic parameterization is built to characterize the time evolution of the unobserved variables. Closed analytic formula via efficient nonlinear data assimilation is exploited to sample the trajectories of the unobserved variables, which are then treated as synthetic observations to advance a rapid parameter estimation. Furthermore, the localization of the state variable dependence and the physics constraints are incorporated into the learning procedure. This mitigates the curse of dimensionality and prevents the finite time blow-up issue. Numerical experiments show that the new algorithm identifies the model structure and provides suitable stochastic parameterizations for many complex nonlinear systems with chaotic dynamics, spatiotemporal multiscale structures, intermittency, and extreme events. 
    more » « less