skip to main content


Title: Curve Lengthening via Regularized Motion Against Curvature from the Strong FCH Flow
We present a rigorous analysis of the transient evolution of nearly circular bilayer interfaces evolving under the thin interface limit, ε ≪ 1, of the mass preserving L2-gradient flow of the strong scaling of the functionalized Cahn–Hilliard equation. For a domain Ω ⊂ R2 we construct a bilayer manifold with boundary comprised of quasi-equilibria of the flow and a projection onto the manifold that associates functions u in an H2 tubular neighborhood of the manifold with an interface Γ embedded in Ω. The linearization of the flow about the manifold does not present a clear spectral separation of modes normal and tangential to the manifold. The dimension of the parameterization of the interfaces and the bilayer manifold controls both the normal coercivity of the manifold and the coupling between normal and tangential modes, both of which increase with this dimension. The key step in the analysis is the identification of a range of dimensions in which coercivity dominates the coupling, permitting the closure of the nonlinear estimates that establish the asymptotic stability of the manifold. Orbits originating in a thin, forward invariant, tubular neighborhood ultimately converge to an equilibrium associated to a circular interface. Projections of these orbits yield interfacial evolution equivalent at leading order to the regularized curve-lengthening motion characterized by normal motion against mean curvature, regularized by a higher order Willmore expression. The curve lengthening is driven by absorption of excess mass from the regions of Ω away from the interface, leading to high dimensional dynamics that are ill-posed in the ε → 0+ limit.  more » « less
Award ID(s):
1813203
NSF-PAR ID:
10359255
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Journal of Dynamics and Differential Equations
ISSN:
1040-7294
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The behavior of fluid interfaces far from equilibrium plays central roles in nature and in industry. Active swimmers trapped at interfaces can alter transport at fluid boundaries with far reaching implications. Swimmers can become trapped at interfaces in diverse configurations and swim persistently in these surface adhered states. The self-propelled motion of bacteria makes them ideal model swimmers to understand such effects. We have recently characterized the swimming of interfacially-trapped Pseudomonas aeruginosa PA01 moving in pusher mode. The swimmers adsorb at the interface with pinned contact lines, which fix the angle of the cell body at the interface and constrain their motion. Thus, most interfacially-trapped bacteria swim along circular paths. Fluid interfaces form incompressible two-dimensional layers, altering leading order interfacial flows generated by the swimmers from those in bulk. In our previous work, we have visualized the interfacial flow around a pusher bacterium and described the flow field using two dipolar hydrodynamic modes; one stresslet mode whose symmetries differ from those in bulk, and another bulk mode unique to incompressible fluid interfaces. Based on this understanding, swimmers-induced tracer displacements and swimmer-swimmer pair interactions are explored using analysis and experiment. The settings in which multiple interfacial swimmers with circular motion can significantly enhance interfacial transport of tracers or promote mixing of other swimmers on the interface are identified through simulations and compared to experiment. This study identifies important factors of general interest regarding swimmers on or near fluid boundaries, and in the design of biomimetic swimmers to enhance transport at interfaces. 
    more » « less
  2. null (Ed.)
    We derive expressions for the leading-order far-field flows generated by externally driven and active (swimming) colloids at planar fluid–fluid interfaces. We consider colloids adjacent to the interface or adhered to the interface with a pinned contact line. The Reynolds and capillary numbers are assumed much less than unity, in line with typical micron-scale colloids involving air– or alkane–aqueous interfaces. For driven colloids, the leading-order flow is given by the point-force (and/or torque) response of this system. For active colloids, the force-dipole (stresslet) response occurs at leading order. At clean (surfactant-free) interfaces, these hydrodynamic modes are essentially a restricted set of the usual Stokes multipoles in a bulk fluid. To leading order, driven colloids exert Stokeslets parallel to the interface, while active colloids drive differently oriented stresslets depending on the colloid's orientation. We then consider how these modes are altered by the presence of an incompressible interface, a typical circumstance for colloidal systems at small capillary numbers in the presence of surfactant. The leading-order modes for driven and active colloids are restructured dramatically. For driven colloids, interfacial incompressibility substantially weakens the far-field flow normal to the interface; the point-force response drives flow only parallel to the interface. However, Marangoni stresses induce a new dipolar mode, which lacks an analogue on a clean interface. Surface-viscous stresses, if present, potentially generate very long-ranged flow on the interface and the surrounding fluids. Our results have important implications for colloid assembly and advective mass transport enhancement near fluid boundaries. 
    more » « less
  3. null (Ed.)
    A computational approach based on a k-ω delayed detached eddy simulation model for predicting aerodynamic loads on a smooth circular cylinder is verified against experiments. Comparisons with experiments are performed for flow over a rigidly mounted (static) cylinder and for an elastically-mounted rigid cylinder oscillating in the transverse direction due to vortex-induced vibration (VIV). For the static cases, measurement data from the literature is used to validate the predictions for normally incident flow. New experiments are conducted as a part of this study for yawed flow, where the cylinder axis is inclined with respect to the inflow velocity at the desired yaw angle, β = 30◦. Good agreement is observed between the predictions and measurements for mean and rms surface pressure. Three yawed flow cases (β = 15◦, 30◦, & 45◦) are simulated and the results are found to be independent of β (independence principle) when the flow speed normal to the cylinder axis is selected as the reference velocity scale. Dynamic (VIV) simulations for an elastically-mounted rigid cylinder are performed by coupling the flow solver with a solid dynamics solver where the cylinder motion is modeled as a mass–spring–damper system. The simulations accurately predict the displacement amplitude and unsteady loading over a wide range of reduced velocity, including the region where ‘‘lock-in’’ (synchronization) occurs. VIV simulations are performed at two yaw angles, β = 0◦ and 45◦ and the independence principle is found to be valid over the range of reduced velocities tested with a slightly higher discrepancy when the vortex shedding frequency is close to the natural frequency of the system. 
    more » « less
  4. Abstract

    The orbital architectures of short-period exoplanet systems are shaped by tidal dissipation in their host stars. For low-mass M dwarfs whose dynamical tidal response comprises a dense spectrum of inertial modes at low frequencies, resolving the frequency dependence of tidal dissipation is crucial to capturing the effect of tides on planetary orbits throughout the evolutionary stages of the host star. We use nonperturbative spectral methods to calculate the normal mode oscillations of a fully convective M dwarf modeled using realistic stellar profiles from MESA. We compute the dissipative tidal response composed of contributions from each mode, as well as nonadiabatic coupling between the modes, which we find to be an essential component of the dissipative calculations. Using our results for dissipation, we then compute the evolution of circular, coplanar planetary orbits under the influence of tides in the host star. We find that orbital migration driven by resonance locking affects the orbits of Earth-mass planets at orbital periodsPorb≲ 1.5 days and of Jupiter-mass planets atPorb≲ 2.5 days. Due to resonantly driven orbital decay and outward migration, we predict a dearth of small planets closer thanPorb∼ 1 day and similarly sparse numbers of more massive planets out toPorb∼ 3 days.

     
    more » « less
  5. Abstract This paper shows how clusters of radiation-stabilized water droplets levitated in an upward flow of air and water vapor above a heated water surface can be modeled using Spalding's self-similarity theory of heat and mass transfer and Stefan flow. The model describes equilibrium droplet states, including stability conditions, as well as nonequilibrium (quasi-steady) transient evolution. Equilibrium states are shown to exist when Stefan-flow supersaturation, which has a quadratic-like variation with height above the water surface, and radiation-stabilized equilibrium supersaturation, which is nearly constant with height, are equal. The latter can be predicted by a fundamentally derived function of absorbed radiant flux (linear), droplet radius (linear if opaque), continuum thermal conductivity, and thermodynamic properties. In fact, all of the experimentally observed droplet behavior can be predicted using simple analytical results based on quasi-steady droplet energy and continuum transport. Unsteady droplet energy, Knudsen-layer transport, numerical solutions, and curve-fitting of numerical computations, as used previously in modeling this behavior, are not necessary. An interesting reversal of the usual effect of mass transfer on droplet drag in low-Re flow when levitated droplets are irradiated asymmetrically by significant infrared radiation is also postulated, which relates to the relative importance of normal (pressure) and tangential (shear stress) drag. This theory of radiation-augmented droplet evaporation, condensation, and relative motion in a moving gas has application to conditions in clouds, wherein droplets can experience either net radiative heating or cooling and fluctuating updrafts or downdrafts. 
    more » « less