The Masing conditions establish a criterion to relate the loading curve of a hysteretic system (e.g., systems with friction or plasticity) to its complete hysteresis loop. For the field of joint mechanics, where hysteretic models are often used to describe the dissipative, tangential behavior within an interface, the Masing conditions allow for significant computational savings when the normal load is constant. In practice, though, jointed systems experience time varying normal forces that modify the tangential behavior of the system. Consequently, the hysteretic behavior of jointed structures do not adhere to the Masing conditions. In this work, this discrepancy between the Masing conditions and behavior exhibited by jointed structures is explored, and it is hypothesized that if the Masing conditions accounted for variations in normal force, then they would more accurately represent jointed structures. A new set of conditions is introduced to the original set of Masing conditions, yielding a « Masing manifold » that spans the tangential displacement-tangential force-normal force space. Both a simple harmonic oscillator and a built-up structure are investigated for the case of elastic dry friction, and the results show that the hysteresis of both of these systems conforms to the three dimensional Masing manifold exactly, provided that a set of constraints are satisfied, even though the hysteresis does not conform with the original Masing conditions.
more »
« less
Curve Lengthening via Regularized Motion Against Curvature from the Strong FCH Flow
We present a rigorous analysis of the transient evolution of nearly circular bilayer interfaces evolving under the thin interface limit, ε ≪ 1, of the mass preserving L2-gradient flow of the strong scaling of the functionalized Cahn–Hilliard equation. For a domain Ω ⊂ R2 we construct a bilayer manifold with boundary comprised of quasi-equilibria of the flow and a projection onto the manifold that associates functions u in an H2 tubular neighborhood of the manifold with an interface Γ embedded in Ω. The linearization of the flow about the manifold does not present a clear spectral separation of modes normal and tangential to the manifold. The dimension of the parameterization of the interfaces and the bilayer manifold controls both the normal coercivity of the manifold and the coupling between normal and tangential modes, both of which increase with this dimension. The key step in the analysis is the identification of a range of dimensions in which coercivity dominates the coupling, permitting the closure of the nonlinear estimates that establish the asymptotic stability of the manifold. Orbits originating in a thin, forward invariant, tubular neighborhood ultimately converge to an equilibrium associated to a circular interface. Projections of these orbits yield interfacial evolution equivalent at leading order to the regularized curve-lengthening motion characterized by normal motion against mean curvature, regularized by a higher order Willmore expression. The curve lengthening is driven by absorption of excess mass from the regions of Ω away from the interface, leading to high dimensional dynamics that are ill-posed in the ε → 0+ limit.
more »
« less
- Award ID(s):
- 1813203
- PAR ID:
- 10359255
- Date Published:
- Journal Name:
- Journal of Dynamics and Differential Equations
- ISSN:
- 1040-7294
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The behavior of fluid interfaces far from equilibrium plays central roles in nature and in industry. Active swimmers trapped at interfaces can alter transport at fluid boundaries with far reaching implications. Swimmers can become trapped at interfaces in diverse configurations and swim persistently in these surface adhered states. The self-propelled motion of bacteria makes them ideal model swimmers to understand such effects. We have recently characterized the swimming of interfacially-trapped Pseudomonas aeruginosa PA01 moving in pusher mode. The swimmers adsorb at the interface with pinned contact lines, which fix the angle of the cell body at the interface and constrain their motion. Thus, most interfacially-trapped bacteria swim along circular paths. Fluid interfaces form incompressible two-dimensional layers, altering leading order interfacial flows generated by the swimmers from those in bulk. In our previous work, we have visualized the interfacial flow around a pusher bacterium and described the flow field using two dipolar hydrodynamic modes; one stresslet mode whose symmetries differ from those in bulk, and another bulk mode unique to incompressible fluid interfaces. Based on this understanding, swimmers-induced tracer displacements and swimmer-swimmer pair interactions are explored using analysis and experiment. The settings in which multiple interfacial swimmers with circular motion can significantly enhance interfacial transport of tracers or promote mixing of other swimmers on the interface are identified through simulations and compared to experiment. This study identifies important factors of general interest regarding swimmers on or near fluid boundaries, and in the design of biomimetic swimmers to enhance transport at interfaces.more » « less
-
Abstract Many barred galaxies exhibit upturns (shoulders) in their bar-major-axis density profile. Simulation studies have suggested that shoulders are supported by loopedx1orbits, occur in growing bars, and can appear after bar buckling. We investigate the orbital support and evolution of shoulders via frequency analyses of orbits in simulations. We confirm that looped orbits are shoulder-supporting, and can remain so, to a lesser extent, after being vertically thickened. We show that looped orbits appear at the resonance ( Ωφ− ΩP)/ΩR= 1/2 (analogous to the classical inner Lindblad resonance, and here called ILR) with vertical-to-radial frequency ratios 1 ≲ Ωz/ΩR≲ 3/2 (verticallywarmorbits).Coolorbits at the ILR (those with Ωz/ΩR> 3/2) are vertically thin and have no loops, contributing negligibly to shoulders. As bars slow and thicken, either secularly or by buckling, they populate warm orbits at the ILR. Further thickening carries these orbits toward crossing the vertical ILR [vILR, ( Ωφ− ΩP)/Ωz= 1/2], where they convert in-plane motion to vertical motion, become chaotic, kinematically hotter, and less shoulder-supporting. Hence, persistent shoulders require bars to trap new stars, consistent with the need for a growing bar. Since buckling speeds up trapping on warm orbits at the ILR, it can be followed by shoulder formation, as seen in simulations. This sequence supports the recent observational finding that shoulders likely precede the emergence of BP-bulges. The python module for the frequency analysis,naif, is made available.more » « less
-
In this paper, we analyze systems with low throughput human-machine interfaces (such as a brain-computer interface, single switch interface) from the controls perspective. We develop some principles for performance improvement in such systems based on the parallelization of inference and robot motion. The proposed principles are used to design a novel shared position control to navigate a circular massless holonomic robot in a known environment. The system is implemented in simulation and integrated with a real robotic wheelchair. Robot experiments demonstrated the viability of the proposed navigation method in various modes of operation.more » « less
-
null (Ed.)We derive expressions for the leading-order far-field flows generated by externally driven and active (swimming) colloids at planar fluid–fluid interfaces. We consider colloids adjacent to the interface or adhered to the interface with a pinned contact line. The Reynolds and capillary numbers are assumed much less than unity, in line with typical micron-scale colloids involving air– or alkane–aqueous interfaces. For driven colloids, the leading-order flow is given by the point-force (and/or torque) response of this system. For active colloids, the force-dipole (stresslet) response occurs at leading order. At clean (surfactant-free) interfaces, these hydrodynamic modes are essentially a restricted set of the usual Stokes multipoles in a bulk fluid. To leading order, driven colloids exert Stokeslets parallel to the interface, while active colloids drive differently oriented stresslets depending on the colloid's orientation. We then consider how these modes are altered by the presence of an incompressible interface, a typical circumstance for colloidal systems at small capillary numbers in the presence of surfactant. The leading-order modes for driven and active colloids are restructured dramatically. For driven colloids, interfacial incompressibility substantially weakens the far-field flow normal to the interface; the point-force response drives flow only parallel to the interface. However, Marangoni stresses induce a new dipolar mode, which lacks an analogue on a clean interface. Surface-viscous stresses, if present, potentially generate very long-ranged flow on the interface and the surrounding fluids. Our results have important implications for colloid assembly and advective mass transport enhancement near fluid boundaries.more » « less
An official website of the United States government

