skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Linking Sparse Coding Dictionaries for Representation Learning
Sparsity is a desirable property as our natural environment can be described by a small number of structural primitives. Strong evidence demonstrates that the brain’s representation is both explicit and sparse, which makes it metabolically efficient by reducing the cost of code transmission. In current standardized machine learning practices, end-to-end classification pipelines are much more prevalent. For the brain, there is no single classification objective function optimized by back-propagation. Instead, the brain is highly modular and learns based on local information and learning rules. In our work, we seek to show that an unsupervised, biologically inspired sparse coding algorithm can create a sparse representation that achieves a classification accuracy on par with standard supervised learning algorithms. We leverage the concept of multi-modality to show that we can link the embedding space with multiple, heterogeneous modalities. Furthermore, we demonstrate a sparse coding model which controls the latent space and creates a sparse disentangled representation, while maintaining a high classification accuracy.  more » « less
Award ID(s):
1954364
PAR ID:
10329202
Author(s) / Creator(s):
;
Date Published:
Journal Name:
International Conference on Rebooting Computing
Page Range / eLocation ID:
84 to 87
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    In this paper, we propose a supervised graph representation learning method to model the relationship between brain functional connectivity (FC) and structural connectivity (SC) through a graph encoder-decoder system. The graph convolutional network (GCN) model is leveraged in the encoder to learn lower-dimensional node representations (i.e. node embeddings) integrating information from both node attributes and network topology. In doing so, the encoder manages to capture both direct and indirect interactions between brain regions in the node embeddings which later help reconstruct empirical FC networks. From node embeddings, graph representations are learnt to embed the entire graphs into a vector space. Our end-to-end model utilizes a multi-objective loss function to simultaneously learn node representations for FC network reconstruction and graph representations for subject classification. The experiment on a large population of non-drinkers and heavy drinkers shows that our model can provide a characterization of the population pattern in the SC-FC relationship, while also learning features that capture individual uniqueness for subject classification. The identified key brain subnetworks show significant between-group difference and support the promising prospect of GCN-based graph representation learning on brain networks to model human brain activity and function. 
    more » « less
  2. Adversarial images are a class of images that have been slightly altered by very specific noise to change the way a deep learning neural network classifies the image. In many cases, this particular noise is imperceptible to the human vision system and thus presents a vulnerability of significant concern to the machine learning and artificial intelligence community. Research towards mitigating this type of attack has taken many forms, one of which is to filter or post process the image before classifying the image with a deep neural network. Techniques such as smoothing, filtering, and compression have been used with varying levels of success. In our work, we explored the use of a neuromorphic software and hardware approach as a protection against adversarial image attack. The algorithm governing our neuromorphic approach is based upon sparse coding. Our sparse coding approach is solved using a dynamic system of equations that models biological low level vision. Our quantitative and qualitative results show that a sparse coding reconstruction is remarkably invariant to changes in sparsity and reconstruction error with respect to classification accuracy. Furthermore, our approach is able to maintain low reconstruction errors without sacrificing classification performance. 
    more » « less
  3. Discriminative features extracted from the sparse coding model have been shown to perform well for classification. Recent deep learning architectures have further improved reconstruction in inverse problems by considering new dense priors learned from data. We propose a novel dense and sparse coding model that integrates both representation capability and discriminative features. The model studies the problem of recovering a dense vector x and a sparse vector u given measurement of the form y = Ax+Bu. Our first analysis relies on a geometric condition, specifically the minimal angle between the spanning subspaces of matrices A and B, which ensures a unique solution to the model. The second analysis shows that, under some conditions on A and B, a convex program recovers the dense and sparse components. We validate the effectiveness of the model on simulated data and propose a dense and sparse autoencoder (DenSaE) tailored to learning the dictionaries from the dense and sparse model. We demonstrate that (i) DenSaE denoises natural images better than architectures derived from the sparse coding model (Bu), (ii) in the presence of noise, training the biases in the latter amounts to implicitly learning the Ax + Bu model, (iii) A and B capture low- and high-frequency contents, respectively, and (iv) compared to the sparse coding model, DenSaE offers a balance between discriminative power and representation. 
    more » « less
  4. Abstract Brain tumor is a life-threatening disease and causes about 0.25 million deaths worldwide in 2020. Magnetic Resonance Imaging (MRI) is frequently used for diagnosing brain tumors. In medically underdeveloped regions, physicians who can accurately diagnose and assess the severity of brain tumors from MRI are highly lacking. Deep learning methods have been developed to assist physicians in detecting brain tumors from MRI and determining their subtypes. In existing methods, neural architectures are manually designed by human experts, which is time-consuming and labor-intensive. To address this problem, we propose to automatically search for high-performance neural architectures for classifying brain tumors from MRIs, by leveraging a Learning-by-Self-Explanation (LeaSE) architecture search method. LeaSE consists of an explainer model and an audience model. The explainer aims at searching for a highly performant architecture by encouraging the architecture to generate high-fidelity explanations of prediction outcomes, where explanations’ fidelity is evaluated by the audience model. LeaSE is formulated as a four-level optimization problem involving a sequence of four learning stages which are conducted end-to-end. We apply LeaSE for MRI-based brain tumor classification, including four classes: glioma, meningioma, pituitary tumor, and healthy, on a dataset containing 3264 MRI images. Results show that our method can search for neural architectures that achieve better classification accuracy than manually designed deep neural networks while having fewer model parameters. For example, our method achieves a test accuracy of 90.6% and an AUC of 95.6% with 3.75M parameters while the accuracy and AUC of a human-designed network—ResNet101—is 84.5% and 90.1% respectively with 42.56M parameters. In addition, our method outperforms state-of-the-art neural architecture search methods. 
    more » « less
  5. Modern neural network architectures use structured linear transformations, such as low-rank matrices, sparse matrices, permutations, and the Fourier transform, to improve inference speed and reduce memory usage compared to general linear maps. However, choosing which of the myriad structured transformations to use (and its associated parameterization) is a laborious task that requires trading off speed, space, and accuracy. We consider a different approach: we introduce a family of matrices called kaleidoscope matrices (K-matrices) that provably capture any structured matrix with near-optimal space (parameter) and time (arithmetic operation) complexity. We empirically validate that K-matrices can be automatically learned within end-to-end pipelines to replace hand-crafted procedures, in order to improve model quality. For example, replacing channel shuffles in ShuffleNet improves classification accuracy on ImageNet by up to 5%. K-matrices can also simplify hand-engineered pipelines---we replace filter bank feature computation in speech data preprocessing with a learnable kaleidoscope layer, resulting in only 0.4% loss in accuracy on the TIMIT speech recognition task. In addition, K-matrices can capture latent structure in models: for a challenging permuted image classification task, adding a K-matrix to a standard convolutional architecture can enable learning the latent permutation and improve accuracy by over 8 points. We provide a practically efficient implementation of our approach, and use K-matrices in a Transformer network to attain 36% faster end-to-end inference speed on a language translation task. 
    more » « less