skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Independent determination of Peltier coefficient in thermoelectric devices
Thermoelectric (TE) generators and coolers are one possible solution to energy autonomy for internet-of-things and biomedical electronics and to locally cool high-performance integrated circuits. The development of TE technology requires not only research into TE materials but also advancing TE device physics, which involves determining properties such as the thermopower ( α) and Peltier ( Π) coefficients at the device rather than material level. Although Π governs TE cooler operation, it is rarely measured because of difficulties isolating Π from larger non-Peltier heat effects such as Joule heating and Fourier thermal conduction. Instead, Π is almost always inferred from α via a theoretical Kelvin relation Π =  αT, where T is the absolute temperature. Here, we demonstrate a method for independently measuring Π on any TE device via the difference in heat flows between the thermopile held open-circuit vs short-circuit. This method determines Π solely from conventionally measured device performance parameters, corrects for non-Peltier heat effects, does not require separate knowledge of material property values, and does not assume the Kelvin relation. A measurement of Π is demonstrated on a commercial Bi 2 Te 3 TE generator. By measuring α and Π independently on the same device, the ratio ( Π/ α) is free of parasitic thermal impedances, allowing the Kelvin relation to be empirically verified to reasonable accuracy.  more » « less
Award ID(s):
1707581
PAR ID:
10329242
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Applied Physics Letters
Volume:
120
Issue:
18
ISSN:
0003-6951
Page Range / eLocation ID:
183901
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Kelvin relation (KR) connecting the Peltier coefficient Π, the thermopower α, and the absolute temperature T via Π = αT is a cornerstone of thermoelectric (TE) physics. It is also a widely recognized example of an Onsager reciprocal relation, a foundational principle in nonequilibrium irreversible thermodynamics. While the KR is routinely invoked to understand TE systems, it has surprisingly little rigorous empirical verification. Accurate experimental tests of the KR are complicated by several factors, including non-Peltier heat flows such as Joule heating or Fourier thermal conduction, uncharacterized thermal contact impedances, and the need for Peltier and thermopower effects to be measured on the same thermopile at the same temperatures. Most empirical assessments of the KR have either made questionable simplifications or been limited in accuracy to several percent. Here, we present a test of the KR that is free of the difficulties of prior experiments and relies only on conventional voltage, current, and temperature measurements, so that it could be performed on any thermopile. Conducting the test on a Bi 2 Te 3 thermopile, the empirical ratio Π/α is found to equal T within a relative deviation < 0.5% for T in the range of 320–340 K. This result is quantitatively consistent with the KR and justifies the use of the KR in TE applications to reasonably high accuracy. 
    more » « less
  2. Thermoelectric (TE) nanostructures with dimensions of 100 nm can show substantially better TE properties compared to the same material in the bulk form due to charge and heat transport effects specific to the nanometer scale. However, TE physics in nanostructures is still described using the Kelvin relation (KR) P = aT, where P is the Peltier coefficient, a the thermopower, and T the absolute temperature, even though derivation of the KR uses a local equilibrium assumption (LEA) applicable to macroscopic systems. It is unclear whether nanostructures with nanostructures with dimensions on the order of an inelastic mean free path satisfy a LEA under any nonzero temperature gradient. Here, we present an experimental test of the KR on a TE system consisting of doped silicon-based nanostructures with dimensions comparable to the phonon–phonon and electron–phonon mean-free-paths. Such nanostructures are small enough that true local thermodynamic equilibrium may not exist when a thermal gradient is applied. The KR is tested by measuring the ratio P/a under various applied temperature differences and comparing it to the average T. Results show relative deviations from the KR of |(P/a)/T –1| ≤ 2.2%, within measurement uncertainty. This suggests that a complete local equilibrium among all degrees of freedom may be unnecessary for the KR to be valid but could be replaced by a weaker condition of local equilibrium among only charge carriers. 
    more » « less
  3. Abstract Bismuth telluride is the working material for most Peltier cooling devices and thermoelectric generators. This is because Bi2Te3(or more precisely its alloys with Sb2Te3for p‐type and Bi2Se3for n‐type material) has the highest thermoelectric figure of merit,zT, of any material around room temperature. Since thermoelectric technology will be greatly enhanced by improving Bi2Te3or finding a superior material, this review aims to identify and quantify the key material properties that make Bi2Te3such a good thermoelectric. The largezTcan be traced to the high band degeneracy, low effective mass, high carrier mobility, and relatively low lattice thermal conductivity, which all contribute to its remarkably high thermoelectric quality factor. Using literature data augmented with newer results, these material parameters are quantified, giving clear insight into the tailoring of the electronic band structure of Bi2Te3by alloying, or reducing thermal conductivity by nanostructuring. For example, this analysis clearly shows that the minority carrier excitation across the small bandgap significantly limits the thermoelectric performance of Bi2Te3, even at room temperature, showing that larger bandgap alloys are needed for higher temperature operation. Such effective material parameters can also be used for benchmarking future improvements in Bi2Te3or new replacement materials. 
    more » « less
  4. This work evaluates wearable thermoelectric (TE) devices consisting of nanocomposite thermoelectric materials, aluminum nitride ceramic headers, and a flexible and stretchable circuit board. These types of wearable systems are part of a broader effort to harvest thermal energy from the body and convert it into electrical energy to power wearable electronics. Thermoelectric generators are made of p-type (Bi,Sb)2Te3 and n-type Bi2(Te,Se)3. The nanocomposite thermoelectric materials investigated in this research address the two fundamental challenges for body heat harvesting. The first challenge is related to the unavailability of high zT n-type materials near the body temperature. The second challenge is related to the thermoelectric power factor. To improve the zT, one has to increase the power factor simultaneously while reducing the thermal conductivity. Our nanocomposites result in enhancement of the TE power factor along with the reduction of the thermal conductivity. The fundamental reason is a nanoscale effect that happens only when the energy distribution function of the carriers does not relax to that of the bulk material in the crystallites. Ten p-type and ten n-type nanocomposite ingots were synthesized and characterized in this research. All ingots were characterized versus their thermoelectric properties and they all showed similarly enhanced properties. Our nanocomposites, compared to commercial materials, have better zT and thermal resistivity by 40% and 75% for p-type, respectively, and 15% and 140% for n-type. Compared to the state-of-the-art materials, our nanocomposites produce significantly higher power due to their optimized properties for the body temperature. 
    more » « less
  5. Effective heat management plays a vital role in ensuring the performance and reliability of nanoelectronic devices. Here, we present a new practical approach for thermal characterization: The dual laser at same side Raman technique. This method is not only straightforward and reliable but also delivers accurate thermal property measurements. To demonstrate its capabilities, we applied the technique to bulk graphite and measured a thermal conductivity of 467 ± 86 W/(m K). This technique holds potential for measuring direction-dependent thermal conductivity, offering a promising avenue for future investigations. 
    more » « less