skip to main content

This content will become publicly available on January 3, 2023

Title: Investigation of Metastable Low Dimensional Halometallates
The solvothermal synthesis, structure determination and optical characterization of five new metastable halometallate compounds, [1,10-phenH][Pb3.5I8] (1), [1,10-phenH2][Pb5I12]·(H2O) (2), [1,10-phen][Pb2I4] (3), [1,10-phen]2[Pb5Br10] (4) and [1,10-phenH][SbI4]·(H2O) (5) is reported. The materials exhibit rich structural diversity and exhibit structural dimensionalities that include 1D chains, 2D sheets and 3D frameworks. The optical spectra of these materials are consistent with bandgaps ranging from 2.703.44 eV. We show that the optical behavior depends on the structural dimensionality of the reported materials, which are potential candidates for semiconductor applications.
Authors:
; ; ; ; ; ;
Award ID(s):
1806279
Publication Date:
NSF-PAR ID:
10329300
Journal Name:
Molecules
Volume:
27
Page Range or eLocation-ID:
280
ISSN:
1420-3049
Sponsoring Org:
National Science Foundation
More Like this
  1. The crystal structures of three bridged bimetallic molecular compounds, namely, triaqua-2κ 3 O -μ-fluorido-pentafluorido-1κ 5 F -(1,10-phenanthroline-2κ 2 N , N ′)copper(II)titanium(IV) monohydrate, [Cu(TiF 6 )(phen)(H 2 O) 3 ]·H 2 O (phen is 1,10-phenanthroline, C 12 H 8 N 2 ), (I), triaqua-2κ 3 O -μ-fluorido-pentafluorido-1κ 5 F -(1,10-phenanthroline-2κ 2 N , N ′)copper(II)zirconium(IV) monohydrate, [Cu(ZrF 6 )(phen)(H 2 O) 3 ]·H 2 O, (II), and triaqua-2κ 3 O -μ-fluorido-pentafluorido-1κ 5 F -(1,10-phenanthroline-2κ 2 N , N ′)copper(II)hafnium(IV) monohydrate, [Cu(HfF 6 )(phen)(H 2 O) 3 ]·H 2 O, (III), and one molecular salt, bis[diaquafluorido(1,10-phenanthroline-κ 2 N , N ′)copper(II)]more »hexafluoridohafnate(IV) dihydrate, [CuF(phen)(H 2 O) 2 ] 2 [HfF 6 ]·2H 2 O, (IV), are reported. The bridged bimetallic compounds adopt Λ-shaped configurations, with the octahedrally coordinated copper(II) center linked to the fluorinated early transition metal via a fluoride linkage. The extended structures of these Λ-shaped compounds are organized through both intra- and intermolecular hydrogen bonds and intermolecular π–π stacking. The salt compound [Cu(phen)(H 2 O) 2 F] 2 [HfF 6 ]·H 2 O displays an isolated square-pyramidal Cu(phen)(H 2 O) 2 F + complex linked to other cationic complexes and isolated HfF 6 2− anions through intermolecular hydrogen-bonding interactions.« less
  2. The steady-state and ultrafast to supra-nanosecond excited state dynamics of fac -[Re(NBI-phen)(CO) 3 (L)](PF 6 ) (NBI-phen = 16H-benzo[4′,5′]isoquinolino[2′,1′:1,2]imidazo[4,5- f ][1,10]phenanthrolin-16-one) as well as their respective models of the general molecular formula [Re(phen)(CO) 3 (L)](PF 6 ) (L = PPh 3 and CH 3 CN) has been investigated using transient absorption and time-gated photoluminescence spectroscopy. The NBI-phen containing molecules exhibited enhanced visible light absorption with respect to their models and a rapid formation (<6 ns) of the triplet ligand-centred (LC) excited state of the organic ligand, NBI-phen. These triplet states exhibit an extended excited state lifetime that enable the energizedmore »molecules to readily engage in triplet–triplet annihilation photochemistry.« less
  3. Two new tris-heteroleptic Ru( ii ) complexes with triphenylphosphine (PPh 3 ) coordination, cis -[Ru(phen) 2 (PPh 3 )(CH 3 CN)] 2+ (1a, phen = 1,10-phenanthroline) and cis -[Ru(biq)(phen)(PPh 3 )(CH 3 CN)] 2+ (2a, biq = 2,2′-biquinoline), were synthesized and characterized for photochemotherapeutic applications. Upon absorption of visible light, 1a exchanges a CH 3 CN ligand for a solvent water molecule. Surprisingly, the steady-state irradiation of 2a followed by electronic absorption and NMR spectroscopies reveals the photosubstitution of the PPh 3 ligand. Phosphine photoinduced ligand exchange with visible light from a Ru( ii ) polypyridyl complex has not previouslymore »been reported, and calculations reveal that it results from a trans -type influence in the excited state. Complexes 1a and 2a are not toxic against the triple negative breast cancer cell line MDA-MB-231 in the dark, but upon irradiation with blue light, the activity of both complexes increases by factors of >4.2 and 5.8, respectively. Experiments with PPh 3 alone show that the phototoxicity observed for 2a does not arise from the released phosphine ligand, indicating the role of the photochemically generated ruthenium aqua complex on the biological activity. These complexes represent a new design motif for the selective release of PPh 3 and CH 3 CN for use in photochemotherapy.« less
  4. Abstract

    The iron(II) spin crossover complex Fe(1,10-phenanthroline)2(NCS)2, dubbed Fe-phen, has been studied with scanning tunneling microscopy, after adsorption on the ‘herringbone’ reconstructed surface of Au(111) for sub-monolayer coverages. The Fe-phen molecules attach, through their NCS-groups, to the Au atoms of the fcc domains of the reconstructed surface only, thereby lifting the herringbone reconstruction. The molecules stack to form 1D chains, which run along the Au[110] directions. Neighboring Fe-phen molecules are separated by approximately 2.65 nm, corresponding to 9 atomic spacings in this direction. The molecular axis, defined by the two phenanthroline groups, is aligned perpendicular to the chain axis, alongmore »the Au221¯direction, thereby bridging over 5 atomic spacings, in this direction. Experimental evidence suggests that the molecular spins are locked in a mixed state in the sub-monolayer regime at temperatures between 100 K and 300 K.

    « less
  5. Carbohydrate-based low molecular weight gelators (LMWGs) exhibit many desirable properties making them useful in various fields including applications as drug delivery carriers. In order to further understand the structural connection to gelation properties, especially the influence of halide substitutions, we have designed and synthesized a series of para-chlorobenzylidene acetal protected D-glucosamine amide derivatives. Fifteen different amides were synthesized, and their self-assembling properties were assessed in multiple organic solvents, as well as mixtures of organic solvents with water. All derivatives were found to be gelators for at least one solvent and majority formed gels in multiple solvents at concentrations lower thanmore »2 wt%. A few derivatives rendered remarkably stable gels in aqueous solutions at concentrations below 0.1 wt%. The benzamide 13 formed gels in water and in EtOH/H2O (v/v 1:2) at 0.36 mg/mL. The gels were characterized using optical microscopy and atomic force microscopy, and the self-assembly mechanism was probed using variable temperature 1H-NMR spectroscopy. Gel extrusion studies using H2O/DMSO gels successfully printed lines of gels on glass slides, which retained viscoelasticity based on rheology. Gels formed by the benzamide 13 were used for encapsulation and the controlled release of chloramphenicol and naproxen, as well as for dye removal for toluidine blue aqueous solutions.« less