skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Toward a resolution of the NN controversy
Lattice QCD calculations of two-nucleon interactions have been underway for about a decade, but still haven’t reached the pion mass regime necessary for matching onto effective field theories and extrapolating to the physical point. Furthermore, results from different methods, including the use of the Lüscher formalism with different types of operators, as well as the HALQCD potential method, do not agree even qualitatively at very heavy pion mass. We investigate the role that different operators employed in the literature may play on the extraction of spectra for use within the Lüscher method. We first explore expectations from Effective Field Theory solved within a finite volume, for which the exact spectrum may be computed given different physical scenarios. We then present preliminary lattice QCD results for two-nucleon spectra calculated using different operators on a common lattice ensemble.  more » « less
Award ID(s):
1913158 2047185
PAR ID:
10329394
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
38th International Symposium on Lattice Field Theory, LATTICE2021 26th-30th July, 2021
Volume:
PoS(LATTICE2021)
Page Range / eLocation ID:
098
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The low-energy, finite-volume spectrum of the two-nucleon system at a quark mass corresponding to a pion mass of m π 806 MeV is studied with lattice quantum chromodynamics (LQCD) using variational methods. The interpolating-operator sets used in [Variational study of two-nucleon systems with lattice QCD, .] are extended by including a complete basis of local hexaquark operators, as well as plane-wave dibaryon operators built from products of both positive- and negative-parity nucleon operators. Results are presented for the isosinglet and isotriplet two-nucleon channels. In both channels, noticeably weaker variational bounds on the lowest few energy eigenvalues are obtained from operator sets which contain only hexaquark operators or operators constructed from the product of two negative-parity nucleons, while other operator sets produce low-energy variational bounds which are consistent within statistical uncertainties. The consequences of these studies for the LQCD understanding of the two-nucleon spectrum are investigated. Published by the American Physical Society2025 
    more » « less
  2. Hüsken, N; Danilkin, I; Hagelstein, F (Ed.)
    This report summarizes results of the first lattice QCD calculation of coupled-channelπΣ−K¯Nscattering in the Λ(1405) region. This study was carried out using a single CLS ensemble with a heavier-than-physical pion mass m_π≈ 200 MeV and a lighter-than-physical kaon mass m_K>≈ 487 MeV. Once the finite-volume energy spectrum has been reliably extracted, the Lüscher method was employed to obtain scattering amplitudes. Through a variety of parametrizations of the two-channel K-matrix, the final results show a virtual bound state below the πΣ threshold and a resonance right below K¯N. 
    more » « less
  3. In this paper, I review recent progress in lattice-QCD calculations of hadron structure with an emphasis on nucleon structure. A wide range of nucleon observables are being studied in modern lattice calculations, and important progress has been made at physical pion mass, including the spin decomposition of the nucleon and the Bjorken-[Formula: see text] dependence of hadron structure. Challenges and perspectives for future lattice hadron-structure calculations will be discussed. 
    more » « less
  4. Within the large momentum effective theory framework, we report the results of the first direct lattice-QCD calculation of the valence quark distribution in the pion. Our results are comparable quantitatively with the results extracted from experimental data as well as from Dyson-Schwinger equation. Future calculations at physical pion mass and larger momentum will be able to discern discrepancies in various existing analyses. 
    more » « less
  5. null (Ed.)
    We present the first determination of the x-dependent pion gluon distribution from lattice QCD using the pseudo-PDF approach. We use lattice ensembles with 2+1+1 flavors of highly improved staggered quarks (HISQ), generated by MILC Collaboration, at two lattice spacings a≈0.12 and 0.15~fm and three pion masses Mπ≈220, 310 and 690 MeV. We use clover fermions for the valence action and momentum smearing to achieve pion boost momentum up to 2.29 GeV. We find that the dependence of the pion gluon parton distribution on lattice spacing and pion mass is mild. We compare our results from the lightest pion mass ensemble with the determination by JAM and xFitter global fits. 
    more » « less