skip to main content


Title: Shells in CO 2 clusters
Abundance spectra of (CO 2 ) N clusters up to N ≈ 500 acquired under a wide range of adiabatic expansion conditions are analyzed within the evaporative ensemble framework. The analysis reveals that the cluster stability functions display a strikingly universal pattern for all expansion conditions. These patterns reflect the inherent properties of individual clusters. From this analysis the size-dependent cluster binding energies are determined, shell and subshell closing sizes are identified, and cuboctahedral packing ordering for sizes above N ≈ 130 is confirmed. It is demonstrated that a few percent variation in the dissociation energies translates into significant abundance variations, especially for the larger clusters.  more » « less
Award ID(s):
1664601
NSF-PAR ID:
10329398
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Physical Chemistry Chemical Physics
Volume:
24
Issue:
9
ISSN:
1463-9076
Page Range / eLocation ID:
5343 to 5350
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Excess electrons in liquid acetonitrile are of particular interest because they exist in two different forms in equilibrium: they can be present as traditional solvated electrons in a cavity, and they can form some type of solvated molecular anion. Studies of small acetonitrile cluster anions in the gas phase show two isomers with distinct vertical detachment energies, and it is tempting to presume that the two gas-phase cluster anion isomers are precursors of the two excess electron species present in bulk solution. In this paper, we perform DFT-based ab initio molecular dynamics simulations of acetonitrile cluster anions to understand the electronic species that are present and why they have different binding energies. Using a long-range-corrected density functional that was optimally tuned to describe acetonitrile cluster anion structures, we have theoretically explored the chemistry of (CH3CN)n¯ cluster anions with sizes n=5,7 and 10. Since the temperature of the experimental cluster anions is not known, we performed two sets of simulations that investigated how the way in which the cluster anions are prepared affects the excess electron binding motif: one set of simulations simply attached excess electrons to neutral (CH3CN)n clusters, providing little opportunity for the clusters to relax in the presence of the excess electron, while the other set allowed the cluster anions to thermally equilibrate near room temperature. We find that both sets of simulations show three distinct electron binding motifs: electrons can attach to the surface of the cluster (dipole-bound) or be present as either solvated monomer anions, CH3CN¯, or as solvated molecular dimer anions, (CH3CN)2¯. All three species have higher binding energies at larger cluster sizes. Thermal equilibration strongly favors the formation of the valence-bound molecular anions relative to surface-bound excess electrons, and the dimer anion becomes more stable than the monomer anion and surface-bound species as the cluster size increases. The calculated photoelectron spectra from our simulations in which there was poor thermal equilibration are in good agreement with experiment, suggesting assignment of the two experimental cluster anion isomers as the surface-bound electron and the solvated molecular dimer anion. The simulations also suggest that the shoulder seen experimentally on the low-energy isomer's detachment peak is not part of a vibronic progression but instead results from molecular monomer anions. Nowhere in the size range that we explore do we see evidence for a non-valence, cavity-bound interior-solvated electron, indicating that this species is likely only accessible at larger sizes with good thermal equilibration. 
    more » « less
  2. Electronic excitation and concomitant energy transfer leading to Penning ionization in argon–acetylene clusters generated in a supersonic expansion are investigated with synchrotron-based photoionization mass spectrometry and electronic structure calculations. Spectral features in the photoionization efficiency of the mixed argon–acetylene clusters reveal a blue shift from the 2 P 1/2 and 2 P 3/2 excited states of atomic argon. Analysis of this feature suggests that excited states of argon clusters transfer energy to acetylene, resulting in its ionization and successive evaporation of argon. Theoretically calculated Ar n ( n = 2–6) cluster spectra are in excellent agreement with experimental observations, and provide insight into the structure and ionization dynamics of the clusters. A comparison between argon–acetylene and argon–water clusters reveals that argon solvates water better, allowing for higher-order excitons and Rydberg states to be populated. These results are explained by theoretical calculations of respective binding energies and structures. 
    more » « less
  3. The valence photoionization of light and deuterated methanol dimers was studied by imaging photoelectron photoion coincidence spectroscopy in the 10.00–10.35 eV photon energy range. Methanol clusters were generated in a rich methanol beam in nitrogen after expansion into vacuum. They generally photoionize dissociatively to protonated methanol cluster cations, (CH 3 OH) n H + . However, the stable dimer parent ion (CH 3 OH) 2 + is readily detected below the dissociation threshold to yield the dominant CH 3 OH 2 + fragment ion. In addition to protonated methanol, we could also detect the water- and methyl-loss fragment ions of the methanol dimer cation for the first time. These newly revealed fragmentation channels are slow and cannot compete with protonated methanol cation formation at higher internal energies. In fact, the water- and methyl-loss fragment ions appear together and disappear at a ca. 150 meV higher energy in the breakdown diagram. Experiments with selectively deuterated methanol samples showed H scrambling involving two hydroxyl and one methyl hydrogens prior to protonated methanol formation. These insights guided the potential energy surface exploration to rationalize the dissociative photoionization mechanism. The potential energy surface was further validated by a statistical model including isotope effects to fit the experiment for the light and the perdeuterated methanol dimers simultaneously. The (CH 3 OH) 2 + parent ion dissociates via five parallel channels at low internal energies. The loss of both CH 2 OH and CH 3 O neutral fragments leads to protonated methanol. However, the latter, direct dissociation channel is energetically forbidden at low energies. Instead, an isomerization transition state is followed by proton transfer from a methyl group, which leads to the CH 3 (H)OH + ⋯CH 2 OH ion, the precursor to the CH 2 OH-, H 2 O-, and CH 3 -loss fragments after further isomerization steps, in part by a roaming mechanism. Water loss yields the ethanol cation, and two paths are proposed to account for m/z 49 fragment ions after CH 3 loss. The roaming pathways are quickly outcompeted by hydrogen bond breaking to yield CH 3 OH 2 + , which explains the dominance of the protonated methanol fragment ion in the mass spectrum. 
    more » « less
  4. null (Ed.)
    Size-selected negatively-charged boron clusters (B n − ) have been found to be planar or quasi-planar in a wide size range. Even though cage structures emerged as the global minimum at B 39 − , the global minimum of B 40 − was in fact planar. Only in the neutral form did the B 40 borospherene become the global minimum. How the structures of larger boron clusters evolve is of immense interest. Here we report the observation of a bilayer B 48 − cluster using photoelectron spectroscopy and first-principles calculations. The photoelectron spectra of B 48 − exhibit two well-resolved features at low binding energies, which are used as electronic signatures to compare with theoretical calculations. Global minimum searches and theoretical calculations indicate that both the B 48 − anion and the B 48 neutral possess a bilayer-type structure with D 2h symmetry. The simulated spectrum of the D 2h B 48 − agrees well with the experimental spectral features, confirming the bilayer global minimum structure. The bilayer B 48 −/0 clusters are found to be highly stable with strong interlayer covalent bonding, revealing a new structural type for size-selected boron clusters. The current study shows the structural diversity of boron nanoclusters and provides experimental evidence for the viability of bilayer borophenes. 
    more » « less
  5. Abstract

    We report the application of our fragment‐based quantum chemistry model MIM (Molecules‐In‐Molecules) with electrostatic embedding. The method is termed “EE‐MIM (ElectrostaticallyEmbeddedMolecules‐In‐Molecules)” and accounts for the missing electrostatic interactions in the subsystems resulting from fragmentation. Point charges placed at the atomic positions are used to represent the interaction of each subsystem with the rest of the molecule with minimal increase in the computational cost. We have carefully calibrated this model on a range of different sizes of clusters containing up to 57 water molecules. The fragmentation methods have been applied with the goal of reproducing the unfragmented total energy at the MP2/6‐311G(d,p) level. Comparative analysis has been carried out between MIM and EE‐MIM to gauge the impact of electrostatic embedding. Performance of several different parameters such as the type of charge and levels of fragmentation are analyzed for the prediction of absolute energies. The use of background charges in subsystem calculations improves the performance of both one‐ and two‐layer MIM while it is noticeably important in the case of one‐layer MIM. Embedded charges for two‐layer MIM are obtained from a full system calculation at the low‐level. For one‐layer MIM, in the absence of a full system calculation, two different types of embedded charges, namely, Geometry dependent (GD) and geometry independent (GI) charges, are used. A self‐consistent procedure is employed to obtain GD charges. We have further tested our method on challenging charged systems with stronger intermolecular interactions, namely, protonated ammonia clusters (containing up to 30 ammonia molecules). The observations are similar to water clusters with improved performance using embedded charges. Overall, the performance of NPA charges as embedded charges is found to be the best.

     
    more » « less