Electronic excitation and concomitant energy transfer leading to Penning ionization in argon–acetylene clusters generated in a supersonic expansion are investigated with synchrotron-based photoionization mass spectrometry and electronic structure calculations. Spectral features in the photoionization efficiency of the mixed argon–acetylene clusters reveal a blue shift from the 2 P 1/2 and 2 P 3/2 excited states of atomic argon. Analysis of this feature suggests that excited states of argon clusters transfer energy to acetylene, resulting in its ionization and successive evaporation of argon. Theoretically calculated Ar n ( n = 2–6) cluster spectra are in excellent agreement with experimental observations, and provide insight into the structure and ionization dynamics of the clusters. A comparison between argon–acetylene and argon–water clusters reveals that argon solvates water better, allowing for higher-order excitons and Rydberg states to be populated. These results are explained by theoretical calculations of respective binding energies and structures.
more »
« less
Shells in CO 2 clusters
Abundance spectra of (CO 2 ) N clusters up to N ≈ 500 acquired under a wide range of adiabatic expansion conditions are analyzed within the evaporative ensemble framework. The analysis reveals that the cluster stability functions display a strikingly universal pattern for all expansion conditions. These patterns reflect the inherent properties of individual clusters. From this analysis the size-dependent cluster binding energies are determined, shell and subshell closing sizes are identified, and cuboctahedral packing ordering for sizes above N ≈ 130 is confirmed. It is demonstrated that a few percent variation in the dissociation energies translates into significant abundance variations, especially for the larger clusters.
more »
« less
- Award ID(s):
- 1664601
- PAR ID:
- 10329398
- Date Published:
- Journal Name:
- Physical Chemistry Chemical Physics
- Volume:
- 24
- Issue:
- 9
- ISSN:
- 1463-9076
- Page Range / eLocation ID:
- 5343 to 5350
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Motivated by the recent success in using a latticed-based version of the aggregation-volume-bias Monte Carlo method to determine the thermodynamic stabilities of both bcc and fcc clusters formed by Lennard-Jones particles, this approach is extended to the calculation of the nucleation-free energies of solid clusters formed by urea at 300 K in two different polymorphs, i.e., form I and form IV. In addition to the lattice confinement, the constraint on the molecular orientation was found necessary to ensure that the clusters sampled in these simulations are in the corresponding form. A model that can reproduce the experimental properties such as density and lattice parameters of form I at ambient conditions is used in this study. From the size dependencies of the free energies obtained for a finite set of clusters studied, the free energies of clusters at other sizes, including an infinitely large cluster, were extrapolated. At the infinite size, equivalent to a bulk solid, form I was found to be more stable than form IV, which agrees with the experimental results. In addition, form I was found to be thermodynamically stable throughout the entire cluster size range investigated here, which contradicts the previous finding that small form I clusters are unstable from the crystal nucleation simulation studies.more » « less
-
Excess electrons in liquid acetonitrile are of particular interest because they exist in two different forms in equilibrium: they can be present as traditional solvated electrons in a cavity, and they can form some type of solvated molecular anion. Studies of small acetonitrile cluster anions in the gas phase show two isomers with distinct vertical detachment energies, and it is tempting to presume that the two gas-phase cluster anion isomers are precursors of the two excess electron species present in bulk solution. In this paper, we perform DFT-based ab initio molecular dynamics simulations of acetonitrile cluster anions to understand the electronic species that are present and why they have different binding energies. Using a long-range-corrected density functional that was optimally tuned to describe acetonitrile cluster anion structures, we have theoretically explored the chemistry of (CH3CN)n¯ cluster anions with sizes n=5,7 and 10. Since the temperature of the experimental cluster anions is not known, we performed two sets of simulations that investigated how the way in which the cluster anions are prepared affects the excess electron binding motif: one set of simulations simply attached excess electrons to neutral (CH3CN)n clusters, providing little opportunity for the clusters to relax in the presence of the excess electron, while the other set allowed the cluster anions to thermally equilibrate near room temperature. We find that both sets of simulations show three distinct electron binding motifs: electrons can attach to the surface of the cluster (dipole-bound) or be present as either solvated monomer anions, CH3CN¯, or as solvated molecular dimer anions, (CH3CN)2¯. All three species have higher binding energies at larger cluster sizes. Thermal equilibration strongly favors the formation of the valence-bound molecular anions relative to surface-bound excess electrons, and the dimer anion becomes more stable than the monomer anion and surface-bound species as the cluster size increases. The calculated photoelectron spectra from our simulations in which there was poor thermal equilibration are in good agreement with experiment, suggesting assignment of the two experimental cluster anion isomers as the surface-bound electron and the solvated molecular dimer anion. The simulations also suggest that the shoulder seen experimentally on the low-energy isomer's detachment peak is not part of a vibronic progression but instead results from molecular monomer anions. Nowhere in the size range that we explore do we see evidence for a non-valence, cavity-bound interior-solvated electron, indicating that this species is likely only accessible at larger sizes with good thermal equilibration.more » « less
-
We investigate attachment of slow electrons (0–10 eV) to naphthalene (Np) clusters in a crossed beam experiment. Supersonic expansions under different conditions using different buffer gases generate the clusters: in He, Ne, and low pressure Ar, neat (Np)N clusters are formed, while we also observe mixed clusters of naphthalene with rare-gas atoms in co-expansion with Ar above 0.5 bar and with Kr. Negatively charged (Np)n− and Rgm(Np)n− (Rg = Ar, Kr) clusters are analyzed by mass spectrometry, and electron energy dependent ion yields are measured. We show that the smallest stable naphthalene complex with an excess electron, the dimer (Np)2− anion, cannot be formed in a binary collision of a free electron with (Np)2 dimer, nor with (Np)3 trimer. Evaporation of a weakly bound Ar atom(s) from a mixed ArM(Np)2 cluster following electron attachment leads to the dimer (Np)2− anion. Larger (Np)n−, n > 3, transient cluster anions decay via evaporation of an Np unit on a timescale of tens of microseconds. The self-scavenging process opens around 6 eV, where a naphthalene unit is electronically excited by the incoming electron, which is slowed down and trapped. However, the transient negative ion is efficiently stabilized only in the mixed clusters, from which Ar atom(s) can be evaporated.more » « less
-
null (Ed.)Size-selected negatively-charged boron clusters (B n − ) have been found to be planar or quasi-planar in a wide size range. Even though cage structures emerged as the global minimum at B 39 − , the global minimum of B 40 − was in fact planar. Only in the neutral form did the B 40 borospherene become the global minimum. How the structures of larger boron clusters evolve is of immense interest. Here we report the observation of a bilayer B 48 − cluster using photoelectron spectroscopy and first-principles calculations. The photoelectron spectra of B 48 − exhibit two well-resolved features at low binding energies, which are used as electronic signatures to compare with theoretical calculations. Global minimum searches and theoretical calculations indicate that both the B 48 − anion and the B 48 neutral possess a bilayer-type structure with D 2h symmetry. The simulated spectrum of the D 2h B 48 − agrees well with the experimental spectral features, confirming the bilayer global minimum structure. The bilayer B 48 −/0 clusters are found to be highly stable with strong interlayer covalent bonding, revealing a new structural type for size-selected boron clusters. The current study shows the structural diversity of boron nanoclusters and provides experimental evidence for the viability of bilayer borophenes.more » « less
An official website of the United States government

