skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Differentiable time-gated rendering
The continued advancements of time-of-flight imaging devices have enabled new imaging pipelines with numerous applications. Consequently, several forward rendering techniques capable of accurately and efficiently simulating these devices have been introduced. However, general-purpose differentiable rendering techniques that estimate derivatives of time-of-flight images are still lacking. In this paper, we introduce a new theory of differentiable time-gated rendering that enjoys the generality of differentiating with respect to arbitrary scene parameters. Our theory also allows the design of advanced Monte Carlo estimators capable of handling cameras with near-delta or discontinuous time gates. We validate our theory by comparing derivatives generated with our technique and finite differences. Further, we demonstrate the usefulness of our technique using a few proof-of-concept inverse-rendering examples that simulate several time-of-flight imaging scenarios.  more » « less
Award ID(s):
2105806 1900927
PAR ID:
10329422
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
ACM Transactions on Graphics
Volume:
40
Issue:
6
ISSN:
0730-0301
Page Range / eLocation ID:
1 to 16
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Inverse rendering is a powerful approach to modeling objects from photographs, and we extend previous techniques to handle translucent materials that exhibit subsurface scattering. Representing translucency using a heterogeneous bidirectional scattering-surface reflectance distribution function (BSSRDF), we extend the framework of path-space differentiable rendering to accommodate both surface and subsurface reflection. This introduces new types of paths requiring new methods for sampling moving discontinuities in material space that arise from visibility and moving geometry. We use this differentiable rendering method in an end-to-end approach that jointly recovers heterogeneous translucent materials (represented by a BSSRDF) and detailed geometry of an object (represented by a mesh) from a sparse set of measured 2D images in a coarse-to-fine framework incorporating Laplacian preconditioning for the geometry. To efficiently optimize our models in the presence of the Monte Carlo noise introduced by the BSSRDF integral, we introduce a dual-buffer method for evaluating the L2 image loss. This efficiently avoids potential bias in gradient estimation due to the correlation of estimates for image pixels and their derivatives and enables correct convergence of the optimizer even when using low sample counts in the renderer. We validate our derivatives by comparing against finite differences and demonstrate the effectiveness of our technique by comparing inverse-rendering performance with previous methods. We show superior reconstruction quality on a set of synthetic and real-world translucent objects as compared to previous methods that model only surface reflection. 
    more » « less
  2. Abstract Mathematically representing the shape of an object is a key ingredient for solving inverse rendering problems. Explicit representations like meshes are efficient to render in a differentiable fashion but have difficulties handling topology changes. Implicit representations like signed‐distance functions, on the other hand, offer better support of topology changes but are much more difficult to use for physics‐based differentiable rendering. We introduce a new physics‐based inverse rendering pipeline that uses both implicit and explicit representations. Our technique enjoys the benefit of both representations by supporting both topology changes and differentiable rendering of complex effects such as environmental illumination, soft shadows, and interreflection. We demonstrate the effectiveness of our technique using several synthetic and real examples. 
    more » « less
  3. Boundary integrals are unique to physics-based differentiable rendering and crucial for differentiating with respect to object geometry. Under the differential path integral framework---which has enabled the development of sophisticated differentiable rendering algorithms---the boundary components are themselves path integrals. Previously, although the mathematical formulation of boundary path integrals have been established, efficient estimation of these integrals remains challenging. In this paper, we introduce a new technique to efficiently estimate boundary path integrals. A key component of our technique is a primary-sample-space guiding step for importance sampling of boundary segments. Additionally, we show multiple importance sampling can be used to combine multiple guided samplings. Lastly, we introduce an optional edge sorting step to further improve the runtime performance. We evaluate the effectiveness of our method using several differentiable-rendering and inverse-rendering examples and provide comparisons with existing methods for reconstruction as well as gradient quality. 
    more » « less
  4. Pixel reconstruction filters play an important role in physics-based rendering and have been thoroughly studied. In physics-based differentiable rendering, however, the proper treatment of pixel filters remains largely under-explored. We present a new technique to efficiently differentiate pixel reconstruction filters based on the path-space formulation. Specifically, we formulate the pixel boundary integral that models discontinuities in pixel filters and introduce new antithetic sampling methods that support differentiable path sampling methods, such as adjoint particle tracing and bidirectional path tracing. We demonstrate both the need and efficacy of antithetic sampling when estimating this integral, and we evaluate its effectiveness across several differentiable- and inverse-rendering settings. 
    more » « less
  5. Physics-based differentiable rendering, the estimation of derivatives of ra- diometric measures with respect to arbitrary scene parameters, has a diverse array of applications from solving analysis-by-synthesis problems to train- ing machine learning pipelines incorporating forward rendering processes. Unfortunately, general-purpose differentiable rendering remains challenging due to the lack of efficient estimators as well as the need to identify and handle complex discontinuities such as visibility boundaries. In this paper, we show how path integrals can be differentiated with respect to arbitrary differentiable changes of a scene. We provide a detailed theoretical analysis of this process and establish new differentiable rendering formulations based on the resulting differential path integrals. Our path- space differentiable rendering formulation allows the design of new Monte Carlo estimators that offer significantly better efficiency than state-of-the-art methods in handling complex geometric discontinuities and light transport phenomena such as caustics. 
    more » « less