skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Vidtr: Video transformer without convolutions
We introduce Video Transformer (VidTr) with separableattention for video classification. Comparing with commonly used 3D networks, VidTr is able to aggregate spatiotemporal information via stacked attentions and provide better performance with higher efficiency. We first introduce the vanilla video transformer and show that transformer module is able to perform spatio-temporal modeling from raw pixels, but with heavy memory usage. We then present VidTr which reduces the memory cost by 3.3× while keeping the same performance. To further optimize the model, we propose the standard deviation based topK pooling for attention (pooltopK std), which reduces the computation by dropping non-informative features along temporal dimension. VidTr achieves state-of-the-art performance on five commonly used datasets with lower computational requirement, showing both the efficiency and effectiveness of our design. Finally, error analysis and visualization show that VidTr is especially good at predicting actions that require long-term temporal reasoning.  more » « less
Award ID(s):
1763827
PAR ID:
10329452
Author(s) / Creator(s):
Date Published:
Journal Name:
Proceedings of the IEEE International Conference on Computer Vision
ISSN:
1550-5499
Page Range / eLocation ID:
13577 - 13587
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Video Paragraph Captioning aims to generate a multi-sentence description of an untrimmed video with multiple temporal event locations in a coherent storytelling. Following the human perception process, where the scene is effectively understood by decomposing it into visual (e.g. human, animal) and non-visual components (e.g. action, relations) under the mutual influence of vision and language, we first propose a visual-linguistic (VL) feature. In the proposed VL feature, the scene is modeled by three modalities including (i) a global visual environment; (ii) local visual main agents; (iii) linguistic scene elements. We then introduce an autoregressive Transformer-in-Transformer (TinT) to simultaneously capture the semantic coherence of intra- and inter-event contents within a video. Finally, we present a new VL contrastive loss function to guarantee the learnt embedding features are consistent with the captions semantics. Comprehensive experiments and extensive ablation studies on the ActivityNet Captions and YouCookII datasets show that the proposed Visual-Linguistic Transformer-in-Transform (VLTinT) outperforms previous state-of-the-art methods in terms of accuracy and diversity. The source code is made publicly available at: https://github.com/UARK-AICV/VLTinT. 
    more » « less
  2. In this paper, we aim at synthesizing a free-viewpoint video of an arbitrary human performance using sparse multi-view cameras. Recently, several works have addressed this problem by learning person-specific neural radiance fields (NeRF) to capture the appearance of a particular human. In parallel, some work proposed to use pixel-aligned features to generalize radiance fields to arbitrary new scenes and objects. Adopting such generalization approaches to humans, however, is highly challenging due to the heavy occlusions and dynamic articulations of body parts. To tackle this, we propose Neural Human Performer, a novel approach that learns generalizable neural radiance fields based on a parametric human body model for robust performance capture. Specifically, we first introduce a temporal transformer that aggregates tracked visual features based on the skeletal body motion over time. Moreover, a multi-view transformer is proposed to perform cross-attention between the temporally-fused features and the pixel-aligned features at each time step to integrate observations on the fly from multiple views. Experiments on the ZJU-MoCap and AIST datasets show that our method significantly outperforms recent generalizable NeRF methods on unseen identities and poses. The video results and code are available at https://youngjoongunc.github.io/nhp. 
    more » « less
  3. Classifier-free guidance (CFG) is a key technique for improving conditional generation in diffusion models, enabling more accurate control while enhancing sample quality. It is natural to extend this technique to video diffusion, which generates video conditioned on a variable number of context frames, collectively referred to as history. However, we find two key challenges to guiding with variable-length history: architectures that only support fixed-size conditioning, and the empirical observation that CFG-style history dropout performs poorly. To address this, we propose the Diffusion Forcing Transformer (DFoT), a video diffusion architecture and theoretically grounded training objective that jointly enable conditioning on a flexible number of history frames. We then introduce History Guidance, a family of guidance methods uniquely enabled by DFoT. We show that its simplest form, vanilla history guidance, already significantly improves video generation quality and temporal consistency. A more advanced method, history guidance across time and frequency further enhances motion dynamics, enables compositional generalization to out-of-distribution history, and can stably roll out extremely long videos. 
    more » « less
  4. Stochastic computing (SC) reduces the complexity of computation by representing numbers with long streams of independent bits. However, increasing performance in SC comes with either an increase in area or a loss in accuracy. Processing in memory (PIM) computes data in-place while having high memory density and supporting bit-parallel operations with low energy consumption. In this article, we propose COSMO, an architecture for co mputing with s tochastic numbers in me mo ry, which enables SC in memory. The proposed architecture is general and can be used for a wide range of applications. It is a highly dense and parallel architecture that supports most SC encodings and operations in memory. It maximizes the performance and energy efficiency of SC by introducing several innovations: (i) in-memory parallel stochastic number generation, (ii) efficient implication-based logic in memory, (iii) novel memory bit line segmenting, (iv) a new memory-compatible SC addition operation, and (v) enabling flexible block allocation. To show the generality and efficiency of our stochastic architecture, we implement image processing, deep neural networks (DNNs), and hyperdimensional (HD) computing on the proposed hardware. Our evaluations show that running DNN inference on COSMO is 141× faster and 80× more energy efficient as compared to GPU. 
    more » « less
  5. Large quantities of asynchronous event sequence data such as crime records, emergence call logs, and financial transactions are becoming increasingly available from various fields. These event sequences often exhibit both long-term and short-term temporal dependencies. Variations of neural network based temporal point processes have been widely used for modeling such asynchronous event sequences. However, many current architectures including attention based point processes struggle with long event sequences due to computational inefficiency. To tackle the challenge, we propose an efficient sparse transformer Hawkes process (STHP), which has two components. For the first component, a transformer with a novel temporal sparse self-attention mechanism is applied to event sequences with arbitrary intervals, mainly focusing on short-term dependencies. For the second component, a transformer is applied to the time series of aggregated event counts, primarily targeting the extraction of long-term periodic dependencies. Both components complement each other and are fused together to model the conditional intensity function of a point process for future event forecasting. Experiments on real-world datasets show that the proposed STHP outperforms baselines and achieves significant improvement in computational efficiency without sacrificing prediction performance for long sequences. 
    more » « less