skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Radiation GRMHD simulations of M87: funnel properties and prospects for gap acceleration
Abstract We use the public code ebhlight to carry out 3D radiative general relativistic magnetohydrodynamics (GRMHD) simulations of accretion on to the supermassive black hole in M87. The simulations self-consistently evolve a frequency-dependent Monte Carlo description of the radiation field produced by the accretion flow. We explore two limits of accumulated magnetic flux at the black hole (SANE and MAD), each coupled to several subgrid prescriptions for electron heating that are motivated by models of turbulence and magnetic reconnection. We present convergence studies for the radiation field and study its properties. We find that the near-horizon photon energy density is an order of magnitude higher than is predicted by simple isotropic estimates from the observed luminosity. The radially dependent photon momentum distribution is anisotropic and can be modeled by a set of point-sources near the equatorial plane. We draw properties of the radiation and magnetic field from the simulation and feed them into an analytic model of gap acceleration to estimate the very high energy (VHE) γ-ray luminosity from the magnetized jet funnel, assuming that a gap is able to form. We find luminosities of $$\rm \sim 10^{41} \, erg \, s^{-1}$$ for MAD models and $$\rm \sim 2\times 10^{40} \, erg \, s^{-1}$$ for SANE models, which are comparable to measurements of M87’s VHE flares. The time-dependence seen in our calculations is insufficient to explain the flaring behaviour. Our results provide a step towards bridging theoretical models of near-horizon properties seen in black hole images with the VHE activity of M87.  more » « less
Award ID(s):
1903335
PAR ID:
10329499
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Volume:
507
Issue:
4
ISSN:
0035-8711
Page Range / eLocation ID:
4864 to 4878
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT The Event Horizon Telescope (EHT) collaboration has produced the first resolved images of the supermassive black holes at the centre of our galaxy and at the centre of the elliptical galaxy M87. As both technology and analysis pipelines improve, it will soon become possible to produce spectral index maps of black hole accretion flows on event horizon scales. In this work, we predict spectral index maps of both M87* and Sgr A* by applying the general relativistic radiative transfer (GRRT) code ipole to a suite of general relativistic magnetohydrodynamic (GRMHD) simulations. We analytically show that the spectral index increases with increasing magnetic field strength, electron temperature, and optical depth. Consequently, spectral index maps grow more negative with increasing radius in almost all models, since all of these quantities tend to be maximized near the event horizon. Additionally, photon ring geodesics exhibit more positive spectral indices, since they sample the innermost regions of the accretion flow with the most extreme plasma conditions. Spectral index maps are sensitive to highly uncertain plasma heating prescriptions (the electron temperature and distribution function). However, if our understanding of these aspects of plasma physics can be tightened, even the spatially unresolved spectral index around 230 GHz can be used to discriminate between models. In particular, Standard and Normal Evolution (SANE) flows tend to exhibit more negative spectral indices than Magnetically Arrested Disc (MAD) flows due to differences in the characteristic magnetic field strength and temperature of emitting plasma. 
    more » « less
  2. The Event Horizon Telescope (EHT) recently released the first horizon-scale images of the black hole in M87. Combined with other astronomical data, these images constrain the mass and spin of the hole as well as the accretion rate and magnetic flux trapped on the hole. An important question for the EHT is how well key parameters, such as trapped magnetic flux and the associated disk models, can be extracted from present and future EHT VLBI data products. The process of modeling visibilities and analyzing them is complicated by the fact that the data are sparsely sampled in the Fourier domain while most of the theory/simulation is constructed in the image domain. Here we propose a data- driven approach to analyze complex visibilities and closure quantities for radio interferometric data with neural networks. Using mock interferometric data, we show that our neural networks are able to infer the accretion state as either high magnetic flux (MAD) or low magnetic flux (SANE), suggesting that it is possible to perform parameter extraction directly in the visibility domain without image reconstruction. We have applied VLBInet to real M87 EHT data taken on four di↵erent days in 2017 (April 5, 6, 10, 11), and our neural networks give a score prediction 0.52, 0.4, 0.43, 0.76 for each day, with an average score 0.53, which shows no significant indication for the data to lean toward either the MAD or SANE state. 
    more » « less
  3. The Event Horizon Telescope (EHT) recently released the first horizon-scale images of the black hole in M87. Combined with other astronomical data, these images constrain the mass and spin of the hole as well as the accretion rate and magnetic flux trapped on the hole. An important question for the EHT is how well key parameters, such as trapped magnetic flux and the associated disk models, can be extracted from present and future EHT VLBI data products. The process of modeling visibilities and analyzing them is complicated by the fact that the data are sparsely sampled in the Fourier domain while most of the theory/simulation is constructed in the image domain. Here we propose a data-driven approach to analyze complex visibilities and closure quantities for radio interferometric data with neural networks. Using mock interferometric data, we show that our neural networks are able to infer the accretion state as either high magnetic flux (MAD) or low magnetic flux (SANE), suggesting that it is possible to perform parameter extraction directly in the visibility domain without image reconstruction. We have applied VLBInet to real M87 EHT data taken on four different days in 2017 (April 5, 6, 10, 11), and our neural networks give a score prediction 0.52, 0.4, 0.43, 0.76 for each day, with an average score 0.53, which shows no significant indication for the data to lean toward either the MAD or SANE state. 
    more » « less
  4. Abstract Models of the resolved Event Horizon Telescope (EHT) sources Sgr A* and M87* are constrained by observations at multiple wavelengths, resolutions, polarizations, and time cadences. In this paper, we compare unresolved circular polarization (CP) measurements to a library of models, where each model is characterized by a distribution of CP over time. In the library, we vary the spin of the black hole, the magnetic field strength at the horizon (i.e., both SANE and magnetically arrested disk or MAD models), the observer inclination, a parameter for the maximum ion–electron temperature ratio assuming a thermal plasma, and the direction of the magnetic field dipole moment. We find that Atacama Large Millimeter/submillimeter Array (ALMA) observations of Sgr A* are inconsistent with all edge-on (i= 90°) models. Restricting attention to the MAD models favored by earlier EHT studies of Sgr A*, we find that only models with magnetic dipole moment pointing away from the observer are consistent with ALMA data. We also note that in 26 of the 27 passing MAD models, the accretion flow rotates clockwise on the sky. We provide a table of the means and standard deviations of the CP distributions for all model parameters, along with their trends. 
    more » « less
  5. Abstract Recent advances in numerical simulations of magnetically arrested accretion onto supermassive black holes have shed light on the formation and dynamics of magnetospheric current sheets near the black hole horizon. By considering the pair magnetizationσein the upstream region and the mass accretion rateṁ(in units of the Eddington mass accretion rate) as free parameters we estimate the strength of the magnetic field and develop analytical models, motivated by recent three-dimensional particle-in-cell simulations, to describe the populations of relativistic electrons and positrons (pairs) in the reconnection region.Applying our model to M87*, we numerically compute the non-thermal photon spectra for various values ofσe. We show that pairs that are accelerated up to the synchrotron radiation-limited energy while meandering across both sides of the current sheet, can produce MeV flares with luminosity of ∼ 1041 erg s-1— independent ofσe— for a black hole accreting atṁ=10-5. Pairs that are trapped in the transient current sheet can produce X-ray counterparts to the MeV flares, lasting about a day for current sheets with length of a few gravitational radii. We also show that the upstream plasma can be enriched due to photon-photon pair creation, and derive a new equilibrium magnetization ofσe∼ 103-104forṁ= 10-6- 10-5. Additionally, we explore the potential of magnetospheric current sheets to accelerate protons to ultra-high energies, finding that while acceleration to such energies is limited by various loss mechanisms, such as synchrotron and photopion losses from the non-thermal emission from pairs, maximal proton energies in the range of a few EeV are attainable in magnetospheric sheets forming around supermassive sub-Eddington accreting black holes. 
    more » « less