skip to main content


Title: Developing a Three-Dimensional View of Science Teaching: A Tool to Support Preservice Teacher Discourse
The Next Generation Science Standards (NGSS) and the Framework for K-12 Science Education (NRC, 2012) on which they are based, describe a new vision for science education that includes having students learn science in a way that more closely aligns to how scientists and engineers work and think. Accomplishing this goal will require teacher educators to make important shifts in the ways they prepare future science teachers (NRC, 2012). Many science teaching methods courses are being reformed to better support future science teachers to meet the ambitious goals of the NGSS. Specifically, these reform efforts require evidence-based and standards-aligned tools to help preservice teachers align instruction with the new science standards. This study utilized the methodology of Improvement Science “Plan, Do Study, Act” cycles in order to design a Three-Dimensional Mapping Tool (3D Map) as a visual scaffold for use in science teaching methods courses to support preservice teachers in unpacking the components of NGSS and to promote discourse related to the three-dimensionality of planning instruction. The 3D Map provides a visualization of key elements of the NGSS, while being flexible enough to accommodate established teaching strategies.  more » « less
Award ID(s):
2049130
NSF-PAR ID:
10329500
Author(s) / Creator(s):
Date Published:
Journal Name:
Journal of college science teaching
Volume:
30
Issue:
2
ISSN:
0047-231X
Page Range / eLocation ID:
101-121
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The Next Generation Science Standards (NGSS) and the Framework for K-12 Science Education (NRC, 2012) on which they are based, require a shift in preservice science teacher preparation. NGSS aligned instruction calls to engage learners in the use of authentic science and engineering practices (SEPs) and crosscutting concepts (CCCs) to develop understanding of disciplinary core ideas (DCIs) within the context of a scientific phenomenon (Bybee, 2014; NRC, 2015). To ensure beginning teachers are prepared for this shift, university programs are changing teacher preparation to meet this new vision. This happens primarily in science methods courses where specific supports must be in place to prepare preservice teachers and facilitate course reforms (Bybee, 2014; Krajcik, McNeill, & Reiser, 2008). This paper describes the Next Generation Alliance for Science Educators Toolkit (Next Gen ASET) that was designed to support shifting instructional needs within science methods courses to align with the vision of the NGSS. While not meant to replace existing methods course curriculum, this toolkit promotes dialogue explicit to the vision of the NGSS. Two teaching scenarios demonstrate how the Next Gen ASET Toolkit has been implemented in science methods courses, illustrating its flexibility of and how they accommodate the inclusion of various lesson planning and instructional styles. 
    more » « less
  2. null (Ed.)
    As our nation’s need for engineering professionals grows, a sharp rise in P-12 engineering education programs and related research has taken place (Brophy, Klein, Portsmore, & Rogers, 2008; Purzer, Strobel, & Cardella, 2014). The associated research has focused primarily on students’ perceptions and motivations, teachers’ beliefs and knowledge, and curricula and program success. The existing research has expanded our understanding of new K-12 engineering curriculum development and teacher professional development efforts, but empirical data remain scarce on how racial and ethnic diversity of student population influences teaching methods, course content, and overall teachers’ experiences. In particular, Hynes et al. (2017) note in their systematic review of P-12 research that little attention has been paid to teachers’ experiences with respect to racially and ethnically diverse engineering classrooms. The growing attention and resources being committed to diversity and inclusion issues (Lichtenstein, Chen, Smith, & Maldonado, 2014; McKenna, Dalal, Anderson, & Ta, 2018; NRC, 2009) underscore the importance of understanding teachers’ experiences with complementary research-based recommendations for how to implement engineering curricula in racially diverse schools to engage all students. Our work examines the experiences of three high school teachers as they teach an introductory engineering course in geographically and distinctly different racially diverse schools across the nation. The study is situated in the context of a new high school level engineering education initiative called Engineering for Us All (E4USA). The National Science Foundation (NSF) funded initiative was launched in 2018 as a partnership among five universities across the nation to ‘demystify’ engineering for high school students and teachers. The program aims to create an all-inclusive high school level engineering course(s), a professional development platform, and a learning community to support student pathways to higher education institutions. An introductory engineering course was developed and professional development was provided to nine high school teachers to instruct and assess engineering learning during the first year of the project. This study investigates participating teachers’ implementation of the course in high schools across the nation to understand the extent to which their experiences vary as a function of student demographic (race, ethnicity, socioeconomic status) and resource level of the school itself. Analysis of these experiences was undertaken using a collective case-study approach (Creswell, 2013) involving in-depth analysis of a limited number of cases “to focus on fewer "subjects," but more "variables" within each subject” (Campbell & Ahrens, 1998, p. 541). This study will document distinct experiences of high school teachers as they teach the E4USA curriculum. Participants were purposively sampled for the cases in order to gather an information-rich data set (Creswell, 2013). The study focuses on three of the nine teachers participating in the first cohort to implement the E4USA curriculum. Teachers were purposefully selected because of the demographic makeup of their students. The participating teachers teach in Arizona, Maryland and Tennessee with predominantly Hispanic, African-American, and Caucasian student bodies, respectively. To better understand similarities and differences among teaching experiences of these teachers, a rich data set is collected consisting of: 1) semi-structured interviews with teachers at multiple stages during the academic year, 2) reflective journal entries shared by the teachers, and 3) multiple observations of classrooms. The interview data will be analyzed with an inductive approach outlined by Miles, Huberman, and Saldaña (2014). All teachers’ interview transcripts will be coded together to identify common themes across participants. Participants’ reflections will be analyzed similarly, seeking to characterize their experiences. Observation notes will be used to triangulate the findings. Descriptions for each case will be written emphasizing the aspects that relate to the identified themes. Finally, we will look for commonalities and differences across cases. The results section will describe the cases at the individual participant level followed by a cross-case analysis. This study takes into consideration how high school teachers’ experiences could be an important tool to gain insight into engineering education problems at the P-12 level. Each case will provide insights into how student body diversity impacts teachers’ pedagogy and experiences. The cases illustrate “multiple truths” (Arghode, 2012) with regard to high school level engineering teaching and embody diversity from the perspective of high school teachers. We will highlight themes across cases in the context of frameworks that represent teacher experience conceptualizing race, ethnicity, and diversity of students. We will also present salient features from each case that connect to potential recommendations for advancing P-12 engineering education efforts. These findings will impact how diversity support is practiced at the high school level and will demonstrate specific novel curricular and pedagogical approaches in engineering education to advance P-12 mentoring efforts. 
    more » « less
  3. Abstract

    We find ourselves at a time when the need for transformation in science education is aligning with opportunity. Significant science education resources, namely the Next Generation Science Standards (NGSS) and the Ambitious Science Teaching (AST) framework, need an intentional aim of centering social justice for minoritized communities and youth as well as practices to enact it. While NGSS and AST provide concrete guidelines to support deep learning, revisions are needed to explicitly promote social justice. In this study, we sought to understand how a commitment to social justice, operationalized through culturally sustaining pedagogy (Paris, Culturally sustaining pedagogies and our futures.The Educational Forum, 2021; 85, pp. 364–376), might shape the AST framework to promote more critical versions of teaching science for equity. Through a qualitative multi‐case study, we observed three preservice teacher teams engaged in planning, teaching, and debriefing a 6‐day summer camp in a rural community. Findings showed that teachers shaped the AST sets of practices in ways that sustained local culture and addressed equity aims: anchoring scientific study in phenomena important to community stakeholders; using legitimizing students' stories by both using them to plan the following lessons and as data for scientific argumentation; introducing local community members as scientific experts, ultimately supporting a new sense of pride and advocacy for their community; and supporting students in publicly communicating their developing scientific expertise to community stakeholders. In shaping the AST framework through culturally sustaining pedagogy, teachers made notable investments: developing local networks; learning about local geography, history, and culture; building relationships with students; adapting lessons to incorporate students' ideas; connecting with community stakeholders to build scientific collaborations; and preparing to share their work publicly with the community. Using these findings, we offer a justice‐centered ambitious science teaching (JuST) framework that can deliver the benefits of a framework of practices while also engaging in the necessarily more critical elements of equity work.

     
    more » « less
  4. null (Ed.)
    Teacher education is facing challenges given the recent incorporation of engineering practices and core ideas into the Next Generation Science Standards and state standards of learning. To help teachers meet these standards in their future classrooms, education courses for preservice teachers [PSTs] must provide opportunities to increase science and engineering knowledge, and the associated pedagogies. To address this need, Ed+gineering, an NSF-funded multidisciplinary service-learning project, was implemented to study ways in which PSTs are prepared to meet this challenge. This study provides the models and supporting data for four unique methods of infusion of engineering skills and practices into an elementary science methods course. The four models differ in mode of course delivery, integration of a group project (with or without partnering undergraduate engineering students), and final product (e.g., no product, video, interactive presentation, live lesson delivery). In three of the models, teams of 4-6 undergraduates collaborated to design and deliver (when applicable) lessons for elementary students. This multiple semester, mixed-methods research study, explored the ways in which four unique instructional models, with varied levels of engineering instruction enhancement, influenced PSTs’ science knowledge and pedagogical understanding. Both quantitative (e.g., science content knowledge assessment) and qualitative (e.g., student written reflections) data were used to assess science knowledge gains and pedagogical understanding. Findings suggest that the PSTs learned science content and were often able to explain particular science/ engineering concepts following the interventions. PSTs in more enhanced levels of intervention also shared ways in which their lessons reflected their students’ cultures through culturally responsive pedagogical strategies and how important engineering integration is to the elementary classroom, particularly through hands-on, inquiry-based instruction. 
    more » « less
  5. Major challenges in engineering education include retention of undergraduate engineering students (UESs) and continued engagement after the first year when concepts increase in difficulty. Additionally, employers, as well as ABET, look for students to demonstrate non-technical skills, including the ability to work successfully in groups, the ability to communicate both within and outside their discipline, and the ability to find information that will help them solve problems and contribute to lifelong learning. Teacher education is also facing challenges given the recent incorporation of engineering practices and core ideas into the Next Generation Science Standards (NGSS) and state level standards of learning. To help teachers meet these standards in their classrooms, education courses for preservice teachers (PSTs) must provide resources and opportunities to increase science and engineering knowledge, and the associated pedagogies. To address these challenges, Ed+gineering, an NSF-funded multidisciplinary collaborative service learning project, was implemented into two sets of paired-classes in engineering and education: a 100 level mechanical engineering class (n = 42) and a foundations class in education (n = 17), and a fluid mechanics class in mechanical engineering technology (n = 23) and a science methods class (n = 15). The paired classes collaborated in multidisciplinary teams of 5-8 undergraduate students to plan and teach engineering lessons to local elementary school students. Teams completed a series of previously tested, scaffolded activities to guide their collaboration. Designing and delivering lessons engaged university students in collaborative processes that promoted social learning, including researching and planning, peer mentoring, teaching and receiving feedback, and reflecting and revising their engineering lesson. The research questions examined in this pilot, mixed-methods research study include: (1) How did PSTs’ Ed+gineering experiences influence their engineering and science knowledge?; (2) How did PSTs’ and UESs’ Ed+gineering experiences influence their pedagogical understanding?; and (3) What were PSTs’ and UESs’ overall perceptions of their Ed+gineering experiences? Both quantitative (e.g., Engineering Design Process assessment, Science Content Knowledge assessment) and qualitative (student reflections) data were used to assess knowledge gains and project perceptions following the semester-long intervention. Findings suggest that the PSTs were more aware and comfortable with the engineering field following lesson development and delivery, and often better able to explain particular science/engineering concepts. Both PSTs and UESs, but especially the latter, came to realize the importance of planning and preparing lessons to be taught to an audience. UESs reported greater appreciation for the work of educators. PSTs and UESs expressed how they learned to work in groups with multidisciplinary members—this is a valuable lesson for their respective professional careers. Yearly, the Ed+gineering research team will also request and review student retention reports in their respective programs to assess project impact. 
    more » « less