skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: An unmanned aerial vehicle sampling platform for atmospheric water vapor isotopes in polar environments
Abstract. Above polar ice sheets, atmospheric water vapor exchangeoccurs across the planetary boundary layer (PBL) and is an importantmechanism in a number of processes that affect the surface mass balance ofthe ice sheets. Yet, this exchange is not well understood and hassubstantial implications for modeling and remote sensing of the polarhydrologic cycle. Efforts to characterize the exchange face substantiallogistical challenges including the remoteness of ice sheet field camps,extreme weather conditions, low humidity and temperature that limit theeffectiveness of instruments, and dangers associated with flying mannedaircraft at low altitudes. Here, we present an unmanned aerial vehicle (UAV)sampling platform for operation in extreme polar environments that iscapable of sampling atmospheric water vapor for subsequent measurement ofwater isotopes. This system was deployed to the East Greenland Ice-coreProject (EastGRIP) camp in northeast Greenland during summer 2019. Foursampling flight missions were completed. With a suite of atmosphericmeasurements aboard the UAV (temperature, humidity, pressure, GPS) wedetermine the height of the PBL using online algorithms, allowing forstrategic decision-making by the pilot to sample water isotopes above andbelow the PBL. Water isotope data were measured by a Picarro L2130-iinstrument using flasks of atmospheric air collected within the nose cone ofthe UAV. The internal repeatability for δD and δ18O was2.8 ‰ and 0.45 ‰, respectively,which we also compared to independent EastGRIP tower-isotope data. Based onthese results, we demonstrate the efficacy of this new UAV-isotope platformand present improvements to be utilized in future polar field campaigns. Thesystem is also designed to be readily adaptable to other fields of study,such as measurement of carbon cycle gases or remote sensing of groundconditions.  more » « less
Award ID(s):
1833165
PAR ID:
10329618
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Atmospheric Measurement Techniques
Volume:
14
Issue:
11
ISSN:
1867-8548
Page Range / eLocation ID:
7045 to 7067
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Atmospheric rivers (ARs), and frontal systems more broadly, tend to exhibit prominent “V” shapes in time series of stable isotopes in precipitation. Despite the magnitude and widespread nature of these “V” shapes, debate persists as to whether these shifts are driven by changes in the degree of rainout, which we determine using the Rayleigh distillation of stable isotopes, or by post-condensation processes such as below-cloud evaporation and equilibrium isotope exchange between hydrometeors and surrounding vapor. Here, we present paired precipitation and water vapor isotope time series records from the 5–7 March 2016, AR in Bodega Bay, CA. The stable isotope composition of surface vapor along with independent meteorological constraints such as temperature and relative humidity reveal that rainout and post-condensation processes dominate during different portions of the event. We find that Rayleigh distillation controls during peak AR conditions (with peak rainout of 55%) while post-condensation processes have their greatest effect during periods of decreased precipitation on the margins of the event. These results and analyses inform critical questions regarding the temporal evolution of AR events and the physical processes that control them at local scales. 
    more » « less
  2. Abstract Changes in ice‐sheet size impact atmospheric circulation, a phenomenon documented by models but constrained by few paleoclimate records. We present sub‐centennial‐scale records of summer temperature and summer precipitation hydrogen isotope ratios (δ2H) spanning 12–7 ka from a lake on Baffin Island. In a transient model simulation, winds in this region were controlled by the relative strength of the high‐pressure systems and associated anticyclonic circulation over the retreating Greenland and Laurentide ice sheets. The correlation between summer temperature and precipitation δ2H proxy records changed from negative to positive at 9.8 ka. This correlation structure indicates a shift from alternating local and remote moisture, governed by the two ice‐sheet high‐pressure systems, to only remote moisture after 9.8 ka, governed by the strong Greenland high‐pressure system after the Laurentide Ice Sheet retreated. Such rapid atmospheric circulation changes may also occur in response to future, gradual ice‐sheet retreat. 
    more » « less
  3. Changes in ice-sheet size impact atmospheric circulation, a phenomenon documented by models but constrained by few paleoclimate records. We present sub-centennial-scale records of summer temperature and summer precipitation hydrogen isotope ratios (δ2H) spanning 12–7 kiloannum (ka) from a lake on Baffin Island. In a transient model simulation, winds in this region were controlled by the relative strength of the high-pressure systems and associated anticyclonic circulation over the retreating Greenland and Laurentide ice sheets. The correlation between summer temperature and precipitation δ2H proxy records changed from negative to positive at 9.8 ka. This correlation structure indicates a shift from alternating local and remote moisture, governed by the two ice-sheet high-pressure systems, to only remote moisture after 9.8 ka, governed by the strong Greenland high-pressure system after the Laurentide Ice Sheet retreated. Such rapid atmospheric circulation changes may also occur in response to future, gradual ice-sheet retreat. 
    more » « less
  4. Polar oceans and sea ice cover 15% of the Earth’s ocean surface, and the environment is changing rapidly at both poles. Improving knowledge on the interactions between the atmospheric and oceanic realms in the polar regions, a Surface Ocean–Lower Atmosphere Study (SOLAS) project key focus, is essential to understanding the Earth system in the context of climate change. However, our ability to monitor the pace and magnitude of changes in the polar regions and evaluate their impacts for the rest of the globe is limited by both remoteness and sea-ice coverage. Sea ice not only supports biological activity and mediates gas and aerosol exchange but can also hinder some in-situ and remote sensing observations. While satellite remote sensing provides the baseline climate record for sea-ice properties and extent, these techniques cannot provide key variables within and below sea ice. Recent robotics, modeling, and in-situ measurement advances have opened new possibilities for understanding the ocean–sea ice–atmosphere system, but critical knowledge gaps remain. Seasonal and long-term observations are clearly lacking across all variables and phases. Observational and modeling efforts across the sea-ice, ocean, and atmospheric domains must be better linked to achieve a system-level understanding of polar ocean and sea-ice environments. As polar oceans are warming and sea ice is becoming thinner and more ephemeral than before, dramatic changes over a suite of physicochemical and biogeochemical processes are expected, if not already underway. These changes in sea-ice and ocean conditions will affect atmospheric processes by modifying the production of aerosols, aerosol precursors, reactive halogens and oxidants, and the exchange of greenhouse gases. Quantifying which processes will be enhanced or reduced by climate change calls for tailored monitoring programs for high-latitude ocean environments. Open questions in this coupled system will be best resolved by leveraging ongoing international and multidisciplinary programs, such as efforts led by SOLAS, to link research across the ocean–sea ice–atmosphere interface. 
    more » « less
  5. Abstract The ice–albedo feedback associated with sea ice loss contributes to polar amplification, while the water vapor feedback contributes to tropical amplification of surface warming. However, these feedbacks are not independent of atmospheric energy transport, raising the possibility of complex interactions that may obscure the drivers of polar amplification, in particular its manifestation across the seasonal cycle. Here, we apply a radiative transfer hierarchy to an idealized aquaplanet global climate model coupled to a thermodynamic sea ice model. The climate responses and radiative feedbacks are decomposed into the contributions from sea ice loss, including both retreat and thinning, and the radiative effect of water vapor changes. We find that summer sea ice retreat causes winter polar amplification through ocean heat uptake and release, and the resulting decrease in dry energy transport weakens the magnitude of warming. Moreover, sea ice thinning is found to suppress summer warming and enhance winter warming, additionally contributing to winter amplification. The water vapor radiative effect produces seasonally symmetric polar warming via offsetting effects: enhanced moisture in the summer hemisphere induces the summer water vapor feedback and simultaneously strengthens the winter latent energy transport in the winter hemisphere by increasing the meridional moisture gradient. These results reveal the importance of changes in atmospheric energy transport induced by sea ice retreat and increased water vapor to seasonal polar amplification, elucidating the interactions among these physical processes. 
    more » « less