skip to main content

Title: A Late-time Galaxy-targeted Search for the Radio Counterpart of GW190814
Abstract GW190814 was a compact object binary coalescence detected in gravitational waves by Advanced LIGO and Advanced Virgo that garnered exceptional community interest due to its excellent localization and the uncertain nature of the binary’s lighter-mass component (either the heaviest known neutron star, or the lightest known black hole). Despite extensive follow-up observations, no electromagnetic counterpart has been identified. Here, we present new radio observations of 75 galaxies within the localization volume at Δ t ≈ 35–266 days post-merger. Our observations cover ∼32% of the total stellar luminosity in the final localization volume and extend to later timescales than previously reported searches, allowing us to place the deepest constraints to date on the existence of a radio afterglow from a highly off-axis relativistic jet launched during the merger (assuming that the merger occurred within the observed area). For a viewing angle of ∼46° (the best-fit binary inclination derived from the gravitational wave signal) and assumed electron and magnetic field energy fractions of ϵ e = 0.1 and ϵ B = 0.01, we can rule out a typical short gamma-ray burst-like Gaussian jet with an opening angle of 15° and isotropic-equivalent kinetic energy 2 × 10 51 erg propagating into a constant-density medium n ≳ 0.1 cm −3 . These are the first limits resulting from a galaxy-targeted search for a radio counterpart to a gravitational wave event, and we discuss the challenges—and possible advantages—of applying similar search strategies to future events using current and upcoming radio facilities.  more » « less
Award ID(s):
2002577 2224255 2221789 1944985 1909796
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
The Astrophysical Journal
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this

    GW190425 was the second gravitational wave (GW) signal compatible with a binary neutron star (BNS) merger detected by the Advanced LIGO and Advanced Virgo detectors. Since no electromagnetic counterpart was identified, whether the associated kilonova was too dim or the localization area too broad is still an open question. We simulate 28 BNS mergers with the chirp mass of GW190425 and mass ratio 1 ≤ q ≤ 1.67, using numerical-relativity simulations with finite-temperature, composition dependent equations of state (EOS) and neutrino radiation. The energy emitted in GWs is $\lesssim 0.083\mathrm{\, M_\odot }c^2$ with peak luminosity of 1.1–$2.4\times ~10^{58}/(1+q)^2\, {\rm {erg \, s^{-1}}}$. Dynamical ejecta and disc mass range between 5 × 10−6–10−3 and 10−5–$0.1 \mathrm{\, M_\odot }$, respectively. Asymmetric mergers, especially with stiff EOSs, unbind more matter and form heavier discs compared to equal mass binaries. The angular momentum of the disc is 8–$10\mathrm{\, M_\odot }~GM_{\rm {disc}}/c$ over three orders of magnitude in Mdisc. While the nucleosynthesis shows no peculiarity, the simulated kilonovae are relatively dim compared with GW170817. For distances compatible with GW190425, AB magnitudes are always dimmer than ∼20 mag for the B, r, and K bands, with brighter kilonovae associated to more asymmetric binaries and stiffer EOSs. We suggest that, even assuming a good coverage of GW190425’s sky location, the kilonova could hardly have been detected by present wide-field surveys and no firm constraints on the binary parameters or EOS can be argued from the lack of the detection.

    more » « less
  2. Abstract We present optical follow-up imaging obtained with the Katzman Automatic Imaging Telescope, Las Cumbres Observatory Global Telescope Network, Nickel Telescope, Swope Telescope, and Thacher Telescope of the LIGO/Virgo gravitational wave (GW) signal from the neutron star–black hole (NSBH) merger GW190814. We searched the GW190814 localization region (19 deg 2 for the 90th percentile best localization), covering a total of 51 deg 2 and 94.6% of the two-dimensional localization region. Analyzing the properties of 189 transients that we consider as candidate counterparts to the NSBH merger, including their localizations, discovery times from merger, optical spectra, likely host galaxy redshifts, and photometric evolution, we conclude that none of these objects are likely to be associated with GW190814. Based on this finding, we consider the likely optical properties of an electromagnetic counterpart to GW190814, including possible kilonovae and short gamma-ray burst afterglows. Using the joint limits from our follow-up imaging, we conclude that a counterpart with an r -band decline rate of 0.68 mag day −1 , similar to the kilonova AT 2017gfo, could peak at an absolute magnitude of at most −17.8 mag (50% confidence). Our data are not constraining for “red” kilonovae and rule out “blue” kilonovae with M > 0.5 M ⊙ (30% confidence). We strongly rule out all known types of short gamma-ray burst afterglows with viewing angles <17° assuming an initial jet opening angle of ∼5.°2 and explosion energies and circumburst densities similar to afterglows explored in the literature. Finally, we explore the possibility that GW190814 merged in the disk of an active galactic nucleus, of which we find four in the localization region, but we do not find any candidate counterparts among these sources. 
    more » « less

    We report on the search for the optical counterpart of the gravitational event GW170814, which was carried out with the VLT Survey Telescope (VST) by the GRAvitational Wave Inaf TeAm. Observations started 17.5 h after the Laser Interferometer Gravitational-wave Observatory (LIGO) and Virgo alert and we covered an area of 99 deg2 that encloses $\sim 77{{\ \rm per\ cent}}$ and $\sim 59{{\ \rm per\ cent}}$ of the initial and refined localization probability regions, respectively. A total of six epochs were secured over nearly two months. The survey reached an average limiting magnitude of 22 AB mag in the r band. After assuming the model described in Perna, Lazzati & Farr, that derives as possible optical counterpart of a BBH (binary black hole) event a transient source declining in about one day, we have computed a survey efficiency of about $5{{\ \rm per\ cent}}$. This paper describes the VST observational strategy and the results obtained by our analysis pipelines developed to search for optical transients in multi-epoch images. We report the catalogue of the candidates with possible identifications based on light-curve fitting. We have identified two dozens of SNe, nine AGNs, and one QSO. Nineteen transients characterized by a single detection were not classified. We have restricted our analysis only to the candidates that fall into the refined localization map. None out of 39 left candidates could be positively associated with GW170814. This result implies that the possible emission of optical radiation from a BBH merger had to be fainter than r ∼ 22 (Loptical ∼ 1.4 × 1042 erg s−1) on a time interval ranging from a few hours up to two months after the gravitational wave event.

    more » « less
  4. null (Ed.)
    ABSTRACT Joint multimessenger observations with gravitational waves and electromagnetic (EM) data offer new insights into the astrophysical studies of compact objects. The third Advanced LIGO and Advanced Virgo observing run began on 2019 April 1; during the 11 months of observation, there have been 14 compact binary systems candidates for which at least one component is potentially a neutron star. Although intensive follow-up campaigns involving tens of ground and space-based observatories searched for counterparts, no EM counterpart has been detected. Following on a previous study of the first six months of the campaign, we present in this paper the next five months of the campaign from 2019 October to 2020 March. We highlight two neutron star–black hole candidates (S191205ah and S200105ae), two binary neutron star candidates (S191213g and S200213t), and a binary merger with a possible neutron star and a ‘MassGap’ component, S200115j. Assuming that the gravitational-wave (GW) candidates are of astrophysical origin and their location was covered by optical telescopes, we derive possible constraints on the matter ejected during the events based on the non-detection of counterparts. We find that the follow-up observations during the second half of the third observing run did not meet the necessary sensitivity to constrain the source properties of the potential GW candidate. Consequently, we suggest that different strategies have to be used to allow a better usage of the available telescope time. We examine different choices for follow-up surveys to optimize sky localization coverage versus observational depth to understand the likelihood of counterpart detection. 
    more » « less
  5. Abstract GW170817 is the first binary neutron star (NS) merger detected in gravitational waves (GWs) and photons, and so far remains the only GW event of its class with a definitive electromagnetic counterpart. Radio emission from the structured jet associated with GW170817 has faded below the sensitivity achievable via deep radio observations with the most sensitive radio arrays currently in operation. Hence, we now have the opportunity to probe the radio re-brightening that some models predict, which should emerge at late times from the interaction of the dynamically stripped merger ejecta with the interstellar medium. Here we present the latest results from our deep radio observations of the GW170817 field with the Karl G. Jansky Very Large Array (VLA), 4.5 yr after the merger. Our new data at 3 GHz do not show any compelling evidence for emission in excess to the tail of the jet afterglow (<3.3 μ Jy), confirming our previous results. We thus set new constraints on the dynamical ejecta afterglow models. These constraints favor single-speed ejecta with energies ≲10 50 erg (for an ejecta speed of β 0 = 0.5), or steeper energy–speed distributions of the kilonova ejecta. Our results also suggest larger values of the cold, nonrotating maximum NS mass in equal-mass scenarios. However, without a detection of the dynamical ejecta afterglow, obtaining precise constraints on the NS equation of state remains challenging. 
    more » « less