skip to main content


Search for: All records

Award ID contains: 2002577

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Gamma-ray bursts (GRBs) have historically been divided into two classes. Short-duration GRBs are associated with binary neutron star mergers (NSMs), while long-duration bursts are connected to a subset of core-collapse supernovae (SNe). GRB 211211A recently made headlines as the first long-duration burst purportedly generated by an NSM. The evidence for an NSM origin was excess optical and near-infrared emission consistent with the kilonova observed after the gravitational-wave-detected NSM GW170817. Kilonovae derive their unique electromagnetic signatures from the properties of the heavy elements synthesized by rapid neutron capture (ther-process) following the merger. Recent simulations suggest that the “collapsar” SNe that trigger long GRBs may also producer-process elements. While observations of GRB 211211A and its afterglow rule out an SN typical of those that follow long GRBs, an unusual collapsar could explain both the duration of GRB 211211A and ther-process-powered excess in its afterglow. We use semianalytic radiation transport modeling to evaluate low-mass collapsars as the progenitors of GRB 211211A–like events. We compare a suite of collapsar models to the afterglow-subtracted emission that followed GRB 211211A, and find the best agreement for models with high kinetic energies and an unexpected pattern of56Ni enrichment. We discuss how core-collapse explosions could produce such ejecta, and how distinct our predictions are from those generated by more straightforward kilonova models. We also show that radio observations can distinguish between kilonovae and the more massive collapsar ejecta we consider here.

     
    more » « less
  2. Abstract

    Despite recent progress, the astrophysical channels responsible for rapid neutron capture (r-process) nucleosynthesis remain an unsettled question. Observations of the kilonova following the gravitational-wave-detected neutron star merger GW170817 established mergers as one site of ther-process, but additional sources may be needed to fully explainr-process enrichment in the universe. One intriguing possibility is that rapidly rotating massive stars undergoing core collapse launchr-process-rich outflows off the accretion disks formed from their infalling matter. In this scenario,r-process winds are one component of the supernova (SN) ejecta produced by “collapsar” explosions. We present the first systematic study of the effects ofr-process enrichment on the emission from collapsar-generated SNe. We semianalytically modelr-process SN emission from explosion out to late times and determine its distinguishing features. The ease with whichr-process SNe can be identified depends on how effectively wind material mixes into the initiallyr-process-free outer layers of the ejecta. In many cases, enrichment produces a near-infrared (NIR) excess that can be detected within ∼75 days of explosion. We also discuss optimal targets and observing strategies for testing ther-process collapsar theory, and find that frequent monitoring of optical and NIR emission from high-velocity SNe in the first few months after explosion offers a reasonable chance of success while respecting finite observing resources. Such early identification ofr-process collapsar candidates also lays the foundation for nebular-phase spectroscopic follow-up in the NIR and mid-infrared, for example, with the James Webb Space Telescope.

     
    more » « less
  3. Abstract

    Both the core collapse of rotating massive stars, and the coalescence of neutron star (NS) binaries result in the formation of a hot, differentially rotating NS remnant. The timescales over which differential rotation is removed by internal angular-momentum transport processes (viscosity) have key implications for the remnant’s long-term stability and the NS equation of state (EOS). Guided by a nonrotating model of a cooling proto-NS, we estimate the dominant sources of viscosity using an externally imposed angular-velocity profile Ω(r). Although the magneto-rotational instability provides the dominant source of effective viscosity at large radii, convection and/or the Tayler–Spruit dynamo dominate in the core of merger remnants wheredΩ/dr≥ 0. Furthermore, the viscous timescale in the remnant core is sufficiently short that solid-body rotation will be enforced faster than matter is accreted from rotationally supported outer layers. Guided by these results, we develop a toy model for how the merger remnant core grows in mass and angular momentum due to accretion. We find that merger remnants with sufficiently massive and slowly rotating initial cores may collapse to black holes via envelope accretion, even when the total remnant mass is less than the usually considered threshold ≈1.2MTOVfor forming a stable solid-body rotating NS remnant (whereMTOVis the maximum nonrotating NS mass supported by the EOS). This qualitatively new picture of the post-merger remnant evolution and stability criterion has important implications for the expected electromagnetic counterparts from binary NS mergers and for multimessenger constraints on the NS EOS.

     
    more » « less
  4. Abstract

    We present a comprehensive analysis of 653 optical candidate counterparts reported during the third gravitational-wave (GW) observing run. Our sample concentrates on candidates from the 15 events (published in GWTC-2, GWTC-3, or not retracted on GraceDB) that had a >1% chance of including a neutron star in order to assess their viability as true kilonovae. In particular, we leverage tools available in real time, including pre-merger detections and cross-matching with catalogs (i.e., point-source, variable-star, quasar and host-galaxy redshift data sets), to eliminate 65% of candidates in our sample. We further employ spectroscopic classifications, late-time detections, and light-curve behavior analyses and conclude that 66 candidates remain viable kilonovae. These candidates lack sufficient information to determine their classifications, and the majority would require luminosities greater than that of AT 2017gfo. Pre-merger detections in public photometric survey data and comparison of cataloged host-galaxy redshifts with the GW event distances are critical to incorporate into vetting procedures, as these tools eliminated >20% and >30% of candidates, respectively. We expect that such tools that leverage archival information will significantly reduce the strain on spectroscopic and photometric follow-up resources in future observing runs. Finally, we discuss the critical role prompt updates from GW astronomers to the EM community play in reducing the number of candidates requiring vetting.

     
    more » « less
  5. Abstract

    We explore the effects of rapid rotation on the properties of neutrino-heated winds from proto-neutron stars (PNS) formed in core-collapse supernovae or neutron-star mergers by means of three-dimensional general-relativistic hydrodynamical simulations with M0 neutrino transport. We focus on conditions characteristic of a few seconds into the PNS cooling evolution when the neutrino luminosities obeyLνe+Lν¯e7×1051erg s−1, and over which most of the wind mass loss will occur. After an initial transient phase, all of our models reach approximately steady-state outflow solutions with positive energies and sonic surfaces captured on the computational grid. Our nonrotating and slower rotating models (angular velocity relative to Keplerian Ω/ΩK≲ 0.4; spin periodP≳ 2 ms) generate approximately spherically symmetric outflows with properties in good agreement with previous PNS wind studies. By contrast, our most rapidly spinning PNS solutions (Ω/ΩK≳ 0.75;P≈ 1 ms) generate outflows focused in the rotational equatorial plane with much higher mass-loss rates (by over an order of magnitude), lower velocities, lower entropy, and lower asymptotic electron fractions, than otherwise similar nonrotating wind solutions. Although such rapidly spinning PNS are likely rare in nature, their atypical nucleosynthetic composition and outsized mass yields could render them important contributors of light neutron-rich nuclei compared to more common slowly rotating PNS birth. Our calculations pave the way to including the combined effects of rotation and a dynamically important large-scale magnetic field on the wind properties within a three-dimensional GRMHD framework.

     
    more » « less
  6. Abstract

    For the first ∼3 yrs after the binary neutron star merger event GW 170817, the radio and X-ray radiation has been dominated by emission from a structured relativistic off-axis jet propagating into a low-density medium withn< 0.01 cm−3. We report on observational evidence for an excess of X-ray emission atδt> 900 days after the merger. WithLx≈ 5 × 1038erg s−1at 1234 days, the recently detected X-ray emission represents a ≥3.2σ(Gaussian equivalent) deviation from the universal post-jet-break model that best fits the multiwavelength afterglow at earlier times. In the context ofJetFitafterglow models, current data represent a departure with statistical significance ≥3.1σ, depending on the fireball collimation, with the most realistic models showing excesses at the level of ≥3.7σ. A lack of detectable 3 GHz radio emission suggests a harder broadband spectrum than the jet afterglow. These properties are consistent with the emergence of a new emission component such as synchrotron radiation from a mildly relativistic shock generated by the expanding merger ejecta, i.e., a kilonova afterglow. In this context, we present a set of ab initio numerical relativity binary neutron star (BNS) merger simulations that show that an X-ray excess supports the presence of a high-velocity tail in the merger ejecta, and argues against the prompt collapse of the merger remnant into a black hole. Radiation from accretion processes on the compact-object remnant represents a viable alternative. Neither a kilonova afterglow nor accretion-powered emission have been observed before, as detections of BNS mergers at this phase of evolution are unprecedented.

     
    more » « less
  7. Abstract We present James Webb Space Telescope (JWST) and Hubble Space Telescope (HST) observations of the afterglow of GRB 221009A, the brightest gamma-ray burst (GRB) ever observed. This includes the first mid-IR spectra of any GRB, obtained with JWST/Near Infrared Spectrograph (0.6–5.5 micron) and Mid-Infrared Instrument (5–12 micron), 12 days after the burst. Assuming that the intrinsic spectral slope is a single power law, with F ν ∝ ν − β , we obtain β ≈ 0.35, modified by substantial dust extinction with A V = 4.9. This suggests extinction above the notional Galactic value, possibly due to patchy extinction within the Milky Way or dust in the GRB host galaxy. It further implies that the X-ray and optical/IR regimes are not on the same segment of the synchrotron spectrum of the afterglow. If the cooling break lies between the X-ray and optical/IR, then the temporal decay rates would only match a post-jet-break model, with electron index p < 2, and with the jet expanding into a uniform ISM medium. The shape of the JWST spectrum is near-identical in the optical/near-IR to X-SHOOTER spectroscopy obtained at 0.5 days and to later time observations with HST. The lack of spectral evolution suggests that any accompanying supernova (SN) is either substantially fainter or bluer than SN 1998bw, the proto-type GRB-SN. Our HST observations also reveal a disk-like host galaxy, viewed close to edge-on, that further complicates the isolation of any SN component. The host galaxy appears rather typical among long-GRB hosts and suggests that the extreme properties of GRB 221009A are not directly tied to its galaxy-scale environment. 
    more » « less
  8. Abstract The contemporaneous detection of gravitational waves and gamma rays from GW170817/GRB 170817A, followed by kilonova emission a day after, confirmed compact binary neutron star mergers as progenitors of short-duration gamma-ray bursts (GRBs) and cosmic sources of heavy r -process nuclei. However, the nature (and life span) of the merger remnant and the energy reservoir powering these bright gamma-ray flashes remains debated, while the first minutes after the merger are unexplored at optical wavelengths. Here, we report the earliest discovery of bright thermal optical emission associated with short GRB 180618A with extended gamma-ray emission—with ultraviolet and optical multicolor observations starting as soon as 1.4 minutes post-burst. The spectrum is consistent with a fast-fading afterglow and emerging thermal optical emission 15 minutes post-burst, which fades abruptly and chromatically (flux density F ν ∝ t − α , α = 4.6 ± 0.3) just 35 minutes after the GRB. Our observations from gamma rays to optical wavelengths are consistent with a hot nebula expanding at relativistic speeds, powered by the plasma winds from a newborn, rapidly spinning and highly magnetized neutron star (i.e., a millisecond magnetar), whose rotational energy is released at a rate L th ∝ t −(2.22±0.14) to reheat the unbound merger-remnant material. These results suggest that such neutron stars can survive the collapse to a black hole on timescales much larger than a few hundred milliseconds after the merger and power the GRB itself through accretion. Bright thermal optical counterparts to binary merger gravitational wave sources may be common in future wide-field fast-cadence sky surveys. 
    more » « less
  9. Abstract GW190814 was a compact object binary coalescence detected in gravitational waves by Advanced LIGO and Advanced Virgo that garnered exceptional community interest due to its excellent localization and the uncertain nature of the binary’s lighter-mass component (either the heaviest known neutron star, or the lightest known black hole). Despite extensive follow-up observations, no electromagnetic counterpart has been identified. Here, we present new radio observations of 75 galaxies within the localization volume at Δ t ≈ 35–266 days post-merger. Our observations cover ∼32% of the total stellar luminosity in the final localization volume and extend to later timescales than previously reported searches, allowing us to place the deepest constraints to date on the existence of a radio afterglow from a highly off-axis relativistic jet launched during the merger (assuming that the merger occurred within the observed area). For a viewing angle of ∼46° (the best-fit binary inclination derived from the gravitational wave signal) and assumed electron and magnetic field energy fractions of ϵ e = 0.1 and ϵ B = 0.01, we can rule out a typical short gamma-ray burst-like Gaussian jet with an opening angle of 15° and isotropic-equivalent kinetic energy 2 × 10 51 erg propagating into a constant-density medium n ≳ 0.1 cm −3 . These are the first limits resulting from a galaxy-targeted search for a radio counterpart to a gravitational wave event, and we discuss the challenges—and possible advantages—of applying similar search strategies to future events using current and upcoming radio facilities. 
    more » « less