skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Exploring teachers’ learning to support rigorous science learning through collaborative design
Reform efforts targeting science instruction emphasize that students should develop scientific proficiency that empowers them to collaboratively negotiate science ideas as they develop meaningful understandings about science phenomena through science practices. The lessons teachers design and enact play a critical role in engaging students in rigorous science learning. Collaborative design, in which teachers work together to design, enact, and reflect on their teaching, holds potential to support teachers’ learning, but scarce research examines the pathways by which collaborative design can influence teachers’ instructional practices. Examining the teaching and reflective thinking of two science teachers who engaged in collaborative design activities over two years, we found that their enactment practices became more supportive of students’ rigorous learning over time, and that they identified collaborative efforts with teacher educators and partner teachers to plan lessons and analyze videos of instruction as supportive of their learning to enact rigorous instruction.  more » « less
Award ID(s):
1720587
PAR ID:
10329691
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Annual meeting program American Educational Research Association
ISSN:
0163-9676
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Reform efforts targeting science instruction emphasize that students should develop scientific proficiency that empowers them to collaboratively negotiate science ideas as they develop meaningful understandings about science phenomena through science practices. The lessons teachers design and enact play a critical role in engaging students in rigorous science learning. Collaborative design, in which teachers work together to design, enact, and reflect on their teaching, holds potential to support teachers’ learning, but scarce research examines the pathways by which collaborative design can influence teachers’ instructional practices. Examining the teaching and reflective thinking of two science teachers who engaged in collaborative design activities over two years, we found that their enactment practices became more supportive of students’ rigorous learning over time, and that they perceived collaborative efforts with teacher educators and partner teachers to plan lessons and analyze videos of instruction as supportive of their learning to enact rigorous instruction. 
    more » « less
  2. We describe a professional development model that supports teachers to integrate computational thinking (CT) and computer science principles into middle school science and STEM classes. The model includes the collaborative design (co-design) (Voogt et al., 2015) of storylines or curricular units aligned with the Next Generation Science Standards (NGSS Lead States, 2013) that utilize programmable sensors such as those contained on the micro:bit. Teachers spend several workshops co-designing CT-integrated storylines and preparing to implement them with their own students. As part of this process, teachers develop or modify curricular materials to ensure a focus on coherent, student driven instruction through the investigation of scientific phenomena that are relevant to the students and utilize sensor technology. Teachers implement the storylines and meet to collaboratively reflect on their instructional practices as well as their students’ learning. Throughout this cyclical, multi-year process, teachers develop expertise in CT-integrated science instruction as they plan for and use instructional practices that align with three dimension science teaching and foreground computational thinking. Throughout the professional learning process, teachers alternate between wearing their “student hats” and their “teacher hats”, in order to maintain both a student and teacher perspective as they co-design and reflect on their implementation of CT-integrated units. This paper illustrates two teachers’ experiences of the professional development process over a two-year period, including their learning, planning, implementation, and reflection on two co-designed units. 
    more » « less
  3. null (Ed.)
    Recent instructional reforms in science education emphasize rigorous instruction where students’ engage in high-level thinking and sensemaking as they try to explain phenomena or solve problems. This study aims to investigate how students’ intellectual engagement can be promoted through design and implementation of cognitively demanding science tasks. Specifically, we aim to unpack instructional practices that can help to enhance students’ engagement in high-level thinking and sensemaking as they work in science classrooms. In our analysis, we focused on the implementation of five lessons across three different science classrooms that two middle school science teachers collaboratively designed as a part of a professional development about promoting productive student talk in science classrooms. Our analysis revealed the changes in students’ intellectual engagement across the trajectory of these lessons and three instructional practices associated with enhancing opportunities for students’ thinking: (a) Holding students intellectually accountable to develop explanations of how and why a phenomenon occurs through collaborative work, (b) Leveraging students’ ideas to advance their thinking, (c) Initiating just-in-time resources and questions to problematize students’ intellectual engagement. The study findings provide implications for how to generate opportunities to enhance students’ thinking in the service of sensemaking. 
    more » « less
  4. null (Ed.)
    Recent instructional reforms in science education emphasize rigorous instruction where students’ engage in high-level thinking and sensemaking as they try to explain phenomena or solve problems. This study aims to investigate how students’ intellectual engagement can be promoted through design and implementation of cognitively demanding science tasks. Specifically, we aim to unpack instructional practices that can help to enhance students’ engagement in high-level thinking and sensemaking as they work in science classrooms. In our analysis, we focused on the implementation of five lessons across three different science classrooms that two middle school science teachers collaboratively designed as a part of a professional development about promoting productive student talk in science classrooms. Our analysis revealed the changes in students’ intellectual engagement across the trajectory of these lessons and three instructional practices associated with enhancing opportunities for students’ thinking: (a) Holding students intellectually accountable to develop explanations of how and why a phenomenon occurs through collaborative work, (b) Leveraging students’ ideas to advance their thinking, (c) Initiating just-in-time resources and questions to problematize students’ intellectual engagement. The study findings provide implications for how to generate opportunities to enhance students’ thinking in the service of sensemaking. 
    more » « less
  5. Reform-based instruction that fosters all students’ intellectual engagement and sensemaking is possible. However, it is not yet prevalent across many science classrooms. To gain more insight into how to design and enact science instruction supporting students’ intellectual engagement, this investigation centered on understanding how to design and implement science lessons for promoting students’ intellectual engagement as epistemic agents who shape knowledge building happening in the classroom. We examined a middle school science teacher's design and implementation of four lessons that she did as part of a PD focused on fostering productive science talk in science classrooms. Our analysis revealed that her efforts in fostering opportunities for students’ epistemic agency were evident in both her lesson design and implementation. Her responsiveness to students’ thinking/intellectual engagement throughout the lesson implementations via principled improvisations supported opportunities for students’ epistemic agency. Her efforts allow us to understand how the design and implementation of science lessons with the focus of opening space and maintaining this space by being responsive to students’ thinking are critical for fostering students’ epistemic agency. These findings can provide implications for professional development efforts that seek to develop teachers’ capacity for reform-based instruction in science classrooms. 
    more » « less