skip to main content

This content will become publicly available on April 20, 2023

Title: A New Polystyrene–Poly(vinylpyridinium) Ionic Copolymer Dopant for n‐Type All‐Polymer Thermoelectrics with High and Stable Conductivity Relative to the Seebeck Coefficient giving High Power Factor
A novel n-type copolymer dopant polystyrene-polyvinyl hexylpyridinium fluoride (PSpF) with fluoride anion is designed and synthesized by reversible addition-fragmentation chain transfer (RAFT) polymerization. To our knowledge, it is the first polymeric fluoride dopant. Electrical conductivity of 4.2 S cm-1 and high power factor of 67 μW m-1 K-2 are achieved for PSpF doped polymer films, with a corresponding decrease in thermal conductivity as the PSpF concentration is increased, giving the highest ZT of 0.1. An especially high electrical conductivity of 58 S cm-1 at 88 ℃ and outstanding thermal stability were recorded. Further, organic transistors of PSpF-doped thin films exhibit high electron mobility and Hall mobility of 0.86 and 1.70 cm2 V-1 s-1, respectively. The results suggest that polystyrene-polyvinyl pyridinium salt copolymers with fluoride anion are promising for high performance n-type all-polymer thermoelectrics. This work provides a new way to realize organic thermoelectrics with high conductivity relative to Seebeck coefficient, high power factor, thermal stability and broad processing window.
Authors:
; ; ; ; ; ; ; ; ; ;
Award ID(s):
2107360 1708245
Publication Date:
NSF-PAR ID:
10329773
Journal Name:
Advanced Materials
Page Range or eLocation-ID:
2201062
ISSN:
0935-9648
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Conducting polymers, such as thep-doped poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS), have enabled the development of an array of opto- and bio-electronics devices. However, to make these technologies truly pervasive, stable and easily processable,n-doped conducting polymers are also needed. Despite major efforts, non-type equivalents to the benchmark PEDOT:PSS exist to date. Here, we report on the development of poly(benzimidazobenzophenanthroline):poly(ethyleneimine) (BBL:PEI) as an ethanol-basedn-type conductive ink. BBL:PEI thin films yield ann-type electrical conductivity reaching 8 S cm−1, along with excellent thermal, ambient, and solvent stability. This printablen-type mixed ion-electron conductor has several technological implications for realizing high-performance organic electronic devices, as demonstrated for organic thermoelectricmore »generators with record high power output andn-type organic electrochemical transistors with a unique depletion mode of operation. BBL:PEI inks hold promise for the development of next-generation bioelectronics and wearable devices, in particular targeting novel functionality, efficiency, and power performance.

    « less
  2. N-type semiconducting polymers have been recently utilized in thermoelectric devices, however they have typically exhibited low electrical conductivities and poor device stability, in contrast to p-type semiconductors, which have been much higher performing. This is due in particular to the n-type semiconductor's low doping efficiency, and poor charge carrier mobility. Strategies to enhance the thermoelectric performance of n-type materials include optimizing the electron affinity (EA) with respect to the dopant to improve the doping process and increasing the charge carrier mobility through enhanced molecular packing. Here, we report the design, synthesis and characterization of fused electron-deficient n-type copolymers incorporating themore »electron withdrawing lactone unit along the backbone. The polymers were synthesized using metal-free aldol condensation conditions to explore the effect of enlarging the central phenyl ring to a naphthalene ring, on the electrical conductivity. When n-doped with N-DMBI, electrical conductivities of up to 0.28 S cm −1 , Seebeck coefficients of −75 μV K −1 and maximum Power factors of 0.16 μW m −1 K −2 were observed from the polymer with the largest electron affinity of −4.68 eV. Extending the aromatic ring reduced the electron affinity, due to reducing the density of electron withdrawing groups and subsequently the electrical conductivity reduced by almost two orders of magnitude.« less
  3. Doping is required to increase the electrical conductivity of organic semiconductors for uses in electronic and energy conversion devices. The limited number of commonly used p-type dopants suggests that new dopants or doping mechanisms could improve the efficiency of doping and provide new means for processing doped polymers. Drawing on Lewis acid–base pair chemistry, we combined Lewis acid dopant B(C 6 F 5 ) 3 (BCF) with the weak Lewis base benzoyl peroxide (BPO). The detailed behavior of p-type doping of the model polymer poly(3-hexylthiophene) (P3HT) with this Lewis acid–base pair in solution was examined. Solution 19 F-NMR spectra confirmedmore »the formation of the expected counterion, as well as side products from reactions with solvent. BCF : BPO was also found to efficiently dope a range of semiconducting polymers with varying chemical structures demonstrating that the BCF : BPO combination has an effective electron affinity of at least 5.3 eV. In thin films of regioregular P3HT cast from the doped solutions, delocalized polarons formed due to the large counterions leading to a large polaron-counterion distance. At and above 0.2 eq. BCF : BPO doping, amorphous areas of the film became doped, disrupting the structural order of the films. Despite the change in structural order, thin films of regioregular P3HT doped with 0.2 eq. BCF : BPO had a conductivity of 25 S cm −1 . This study demonstrates the effectiveness of a two-component Lewis acid–base doping mechanism and suggests additional two-component Lewis acid–base chemistries should be explored.« less
  4. Thin films of amorphous small molecule semiconductors are widely used in organic light emitting displays and have promising applications in solar cells and thermoelectric devices. Adding dopants increases the conductivity of organic semiconductors, but high concentrations of dopants can disrupt their structural ordering, alter the shape of the electronic density of states in the material, and increase the effects of Coulomb interactions on charge transport. Electrical doping of the solution processable hole-transport material 2,2′,7,7′-tetrakis[ N , N -di(4-methoxyphenyl)amino]-9,9′-spirobifluorene (spiro-OMeTAD) was studied with 2,3,5,6-tetrafluoro-7,7,8,8-tetracyanoquinodimethane (F 4 TCNQ) as a p-type dopant. Infiltration of F 4 TCNQ from the vapor phase intomore »films of spiro-OMeTAD provided a route to highly doped films with up to 39 ± 2 mol% doping. Structural characterization confirmed that the films remain amorphous even at the highest doping levels with no apparent phase separation. We quantitatively determined the carrier concentration using UV-Vis spectroscopy to interpret the evolution of the electrical conductivity. Over the range of carrier concentrations (10 19 –10 20 1 cm −3 ), the electrical conductivity increased no more than linearly with carrier concentration, while the thermopower had a small increase with carrier concentration. The trends in conductivity and thermopower were related to the unique electronic structure of spiro-OMeTAD, which is able to support two carriers per molecule. Temperature-dependent conductivity measurements were used to further analyze the transport mechanism.« less
  5. This work presents an energy efficient technique for fabricating flexible thermoelectric generators while using printable ink. We have fabricated thermoelectric composite thick films using two different mesh sizes of n-type bismuth particles, various binder to thermoelectric material weight ratios, and two different pressures, 200 MPa and 300 MPa, in order to optimize the thermoelectric properties of the composite films. The use of chitosan dissolved in dimethylsulfoxide with less than 0.2 wt. % of chitosan, the first time chitosan has been used in this process, was sufficient for fabricating TE inks and composite films. Low temperature curing processes, along with uniaxialmore »pressure, were used to evaporate the solvent from the drop-casted inks. This combination reduced the temperature needed compared to traditional curing processes while simultaneously increasing the packing density of the film by removing the pores and voids in the chitosan-bismuth composite film. Microstructural analysis of the composite films reveals low amounts of voids and pores when pressed at sufficiently high pressures. The highest performing composite film was obtained with the weight ratio of 1:2000 binder to bismuth, 100-mesh particle size, and 300 MPa of pressure. The best performing bismuth chitosan composite film that was pressed at 300 MPa had a power factor of 4009 ± 391 μW/m K2 with high electrical conductivity of 7337 ± 522 S/cm. The measured thermal conductivity of this same sample was 4.4 ± 0.8 W/m K and the corresponding figure of merit was 0.27 at room temperature.« less