skip to main content


Title: Solution-processed broadband photodetectors without transparent conductive oxide electrodes
Broadband photodetectors (PDs) have great applications in both industrial and scientific sectors. In this study, solution-processed broadband PDs with an “inverted” vertical photodiode device structure without incorporating transparent conductive oxides electrodes, fabricated by bulk heterojunction (BHJ) composites composed of a low optical gap conjugated polymer blended with highly electrically conductive PbS quantum dots (QDs), operated at room temperature, are reported. The low optical gap conjugated polymer incorporated with PbS QDs contributes to the spectral response from the ultraviolet (UV)-visible to the infrared (IR) range. To realize the IR spectral response and to circumvent the weak IR transparency of the transparent oxide electrodes, the implementation of a photodiode with an “inverted” vertical device structure with the Au anode and the Ba/Al bilayer semitransparent cathode passivated with the MgF 2 layer is demonstrated. Photoinduced charge carrier transfer occurring within the BHJ composite gave rise to decent photocurrent, resulting in detectivities greater than 10 12 Jones (cm Hz 1/2 /W) over the wavelength from the UV-visible to the IR range under low applied bias. Thus, our findings of the utilization of the BHJ composites and an “inverted” vertical photodiode without the incorporation of the transparent conductive oxide electrodes provide a facile way to realize broadband PDs.  more » « less
Award ID(s):
1903303
NSF-PAR ID:
10329833
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Journal of Materials Chemistry C
Volume:
10
Issue:
7
ISSN:
2050-7526
Page Range / eLocation ID:
2783 to 2791
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The traditional von Neumann architecture limits the increase in computing efficiency and results in massive power consumption in modern computers due to the separation of storage and processing units. The novel neuromorphic computation system, an in-memory computing architecture with low power consumption, is aimed to break the bottleneck and meet the needs of the next generation of artificial intelligence (AI) systems. Thus, it is urgent to find a memory technology to implement the neuromorphic computing nanosystem. Nowadays, the silicon-based flash memory dominates non-volatile memory market, however, it is facing challenging issues to achieve the requirements of future data storage device development due to the drawbacks, such as scaling issue, relatively slow operation speed, and high voltage for program/erase operations. The emerging resistive random-access memory (RRAM) has prompted extensive research as its simple two-terminal structure, including top electrode (TE) layer, bottom electrode (BE) layer, and an intermediate resistive switching (RS) layer. It can utilize a temporary and reversible dielectric breakdown to cause the RS phenomenon between the high resistance state (HRS) and the low resistance state (LRS). RRAM is expected to outperform conventional memory device with the advantages, notably its low-voltage operation, short programming time, great cyclic stability, and good scalability. Among the materials for RS layer, indium gallium zinc oxide (IGZO) has shown attractive prospects in abundance and high atomic diffusion property of oxygen atoms, transparency. Additionally, its electrical properties can be easily modulated by controlling the stoichiometric ratio of indium and gallium as well as oxygen potential in the sputter gas. Moreover, since the IGZO can be applied to both the thin-film transistor (TFT) channel and RS layer, it has a great potential for fully integrated transparent electronics application. In this work, we proposed amorphous transparent IGZO-based RRAMs and investigated switching behaviors of the memory cells prepared with different top electrodes. First, ITO was choosing to serve as both TE and BE to achieve high transmittance. A multi-target magnetron sputtering system was employed to deposit all three layers (TE, RS, BE layers) on glass substrate. I-V characteristics were evaluated by a semiconductor parameter analyzer, and the bipolar RS feature of our RRAM devices was demonstrated by typical butterfly curves. The optical transmission analysis was carried out via a UV-Vis spectrometer and the average transmittance was around 80% out of entire devices in the visible-light wavelength range, implying high transparency. We adjusted the oxygen partial pressure during the sputtering of IGZO to optimize the property because the oxygen vacancy concentration governs the RS performance. Electrode selection is crucial and can impact the performance of the whole device. Thus, Cu TE was chosen for our second type of device because the diffusion of Cu ions can be beneficial for the formation of the conductive filament (CF). A ~5 nm SiO 2 barrier layer was employed between TE and RS layers to confine the diffusion of Cu into the RS layer. At the same time, this SiO 2 inserting layer can provide an additional interfacial series resistance in the device to lower the off current, consequently, improve the on/off ratio and whole performance. Finally, an oxygen affinity metal Ti was selected as the TE for our third type of device because the concentration of the oxygen atoms can be shifted towards the Ti electrode, which provides an oxygengettering activity near the Ti metal. This process may in turn lead to the formation of a sub-stoichiometric region in the neighboring oxide that is believed to be the origin of better performance. In conclusion, the transparent amorphous IGZO-based RRAMs were established. To tune the property of RS layer, the sputtering conditions of RS were varied. To investigate the influence of TE selections on switching performance of RRAMs, we integrated a set of TE materials, and a barrier layer on IGZO-based RRAM and compared the switch characteristics. Our encouraging results clearly demonstrate that IGZO is a promising material in RRAM applications and breaking the bottleneck of current memory technologies. 
    more » « less
  2. Biomimetic synaptic processes, which are imitated by functional memory devices in the computer industry, are a key focus of artificial intelligence (AI) research. It is critical to developing a memory technology that is compatible with Brain-Inspired Computing in order to eliminate the von Neumann bottleneck that restricts the efficiency of traditional computer designs. Due to restrictions such as high operation voltage, poor retention capacity, and high power consumption, silicon-based flash memory, which presently dominates the data storage devices market, is having difficulty meeting the requirements of future data storage device development. The developing resistive random-access memory (RRAM) has sparked intense investigation because of its simple two-terminal structure: two electrodes and a switching layer. RRAM has a resistive switching phenomenon which is a cycling behavior between the high resistance state and the low resistance state. This developing device type is projected to outperform traditional memory devices. Indium gallium zinc oxide (IGZO) has attracted great attention for the RRAM switching layer because of its high transparency and high atomic diffusion property of oxygen atoms. More importantly, by controlling the oxygen ratio in the sputter gas, its electrical properties can be easily tuned. The IGZO has been applied to the thin-film transistor (TFT), thus, it is very promising to integrate RRAM with TFT. In this work, we proposed IGZO-based RRAMs. ITO was chosen as the bottom electrode towards achieving a fully transparent memristor. And for the IGZO switching layer, we varied the O2/Ar ratio during the deposition to modify the oxygen vacancy of IGZO. Through the XPS measurement, we confirmed that the higher O2/Ar ratio can lower the oxygen vacancy concentration. We also chose ITO as the top electrode, for the comparison, two active metals copper and silver were tested for the top electrode materials. For our IGZO layer, the best ratio of O2/Ar is the middle value. And copper top electrode device has the most stable cycling switching and the silver one is perfect for large memory window, however, it encounters a stability issue. The optical transmission examination was performed using a UV-Vis spectrometer, and the average transmittance of the complete devices in the visible-light wavelength range was greater than 90%, indicating good transparency. 50nm, 100nm, and 150nm RS layers of IGZO RRAM were produced to explore the thickness dependency on the characteristics of the RS layer. Also, because the oxygen vacancy concentration influences the RS and RRAM performance, the oxygen partial pressure during IGZO sputtering was modified to maximize the property. Electrode selection is critical and can have a significant influence on the device's overall performance. As a result, Cu TE was chosen for our second type of device because Cu ion diffusion can aid in the development of conductive filaments (CF). Finally, between the TE and RS layers, a 5 nm SiO2 barrier layer was used to limit Cu penetration into the RS layer. Simultaneously, this SiO2 inserting layer can offer extra interfacial series resistance in the device, lowering the off current and, as a result, improving the on/off ratio and overall performance. In conclusion, transparent IGZO-based RRAMs have been created. The thickness of the RS layer and the sputtering conditions of the RS layer were modified to tailor the property of the RS layer. A series of TE materials and a barrier layer were incorporated into an IGZO-based RRAM and the performance was evaluated in order to design the TE material's diffusion capabilities to the RS layer and the BE. Our positive findings show that IGZO is a potential material for RRAM applications and overcoming the existing memory technology limitation. 
    more » « less
  3. The major focus of artificial intelligence (AI) research is made on biomimetic synaptic processes that are mimicked by functional memory devices in the computer industry [1]. It is urgent to find a memory technology for suiting with Brain-Inspired Computing to break the von Neumann bottleneck which limits the efficiency of conventional computer architectures [2]. Silicon-based flash memory, which currently dominates the market for data storage devices, is facing challenging issues to meet the needs of future data storage device development due to the limitations, such as high-power consumption, high operation voltage, and low retention capacity [1]. The emerging resistive random-access memory (RRAM) has elicited intense research as its simple sandwiched structure, including top electrode (TE) layer, bottom electrode (BE) layer, and an intermediate resistive switching (RS) layer, can store data using RS phenomenon between the high resistance state (HRS) and the low resistance state (LRS). This class of emerging devices is expected to outperform conventional memory devices [3]. Specifically, the advantages of RRAM include low-voltage operation, short programming time, great cyclic stability, and good scalability [4]. Among the materials for RS layer, indium gallium zinc oxide (IGZO) has attracted attention because of its abundance and high atomic diffusion property of oxygen atoms, transparency, and its easily modulated electrical properties by controlling the stoichiometric ratio of indium and gallium as well as oxygen potential in the sputter gas [5, 6]. Moreover, since the IGZO can be applied to both the thin-film transistor (TFT) channel and RS layer, the IGZO-based fully integrated transparent electronics are very promising [5]. In this work, we proposed transparent IGZO-based RRAMs. First, we chose ITO to serve as both TE and BE to achieve high transmittance in the visible regime of light. All three layers (TE, RS, BE layers) were deposited using a multi-target magnetron sputtering system on glass substrates to demonstrate fully transparent oxide-based devices. I-V characteristics were evaluated by a semiconductor parameter analyzer, and our devices showed typical butterfly curves indicating the bipolar RS property. And the IGZO-based RRAM can survive more than 50 continuous sweeping cycles. The optical transmission analysis was carried out via an UV-Vis spectrometer and the average transmittance around 80% out of entire devices in the visible-light wavelength range, implying high transparency. To investigate the thickness dependence on the properties of RS layer, 50nm, 100nm and 150nm RS layer of IGZO RRAM were fabricated. Also, the oxygen partial pressure during the sputtering of IGZO was varied to optimize the property because the oxygen vacancy concentration governs the RS and RRAM performance. Electrode selection is crucial and can impact the performance of the whole device [7]. Thus, Cu TE was chosen for our second type of device because the diffusion of Cu ions can be beneficial for the formation the conductive filament (CF). Finally, a ~5 nm SiO2 barrier layer was employed between TE and RS layers to confine the diffusion of Cu into the RS layer. At the same time, this SiO2 inserting layer can provide an additional interfacial series resistance in the device to lower the off current, consequently, improve the on/off ratio and whole performance. In conclusion, the transparent IGZO-based RRAMs were established. To tune the property of RS layer, the thickness layer and sputtering conditions of RS were adjusted. In order to engineer the diffusion capability of the TE material to the RS layer and the BE, a set of TE materials and a barrier layer were integrated in IGZO-based RRAM and the performance was compared. Our encouraging results clearly demonstrate that IGZO is a promising material in RRAM applications and overcoming the bottleneck of current memory technologies. 
    more » « less
  4. Abstract

    Polymer solar cells (PSCs) with a bulk heterojunction (BHJ) device structure have incredible advantages, such as low‐cost fabrication and flexibility. However, the power conversion efficiency (PCE) of BHJ PSCs needs to be further improved to realize their practical applications. In this study, boosted PCEs from PSCs based on BHJ composites incorporated with Fe3O4magnetic nanoparticles (MNPs), aligned by an external magnetic field (EMF), are reported. It is found that the coercive electric field within the Fe3O4MNPs generated by the EMF has a strong and positive influence on the charge generation, which results in a more than 10% increase in free charge carriers. Moreover, the coercive electric field speeds up the charge carrier transport and suppresses charge carrier recombination within PSCs. In addition, a shortened extraction time makes charge carriers more likely to make it to the electrodes. As a result, more than 15% enhancement in PCE is observed from the PSCs based on the BHJ composite incorporated with the Fe3O4MNPs and the EMF as compared with that based on the BHJ composite thin film. This work indicates that the incorporation of MNPs and the EMF is a facile way to enhance the PCEs of PSCs.

     
    more » « less
  5. Abstract

    Room‐temperature solution‐processed flexible photodetectors with spectral response from 300 to 2600 nm are reported. Solution‐processed polymeric thin film with transparency ranging from 300 to 7000 nm and superior electrical conductivity as the transparent electrode is reported. Solution‐processed flexible broadband photodetectors with a “vertical” device structure incorporating a perovskite/PbSe quantum dot bilayer thin film based on the above solution‐processed transparent polymeric electrode are demonstrated. The utilization of perovskite/PbSe quantum dot bilayer thin film as the photoactive layer extends spectral response to infrared region and boosts photocurrent densities in both visible and infrared regions through the trap‐assisted photomultiplication effect. Operated at room temperature and under an external bias of ‐1 V, the solution‐processed flexible photodetectors exhibit over 230 mA W‐1responsivity, over 1011 cm Hz1/2/W photodetectivity from 300 to 2600 nm and ≈70 dB linear dynamic ranges. It is also found that the solution‐processed flexible broadband photodetectors exhibit fast response time and excellent flexibility. All these results demonstrate that this work develop a facile approach to realize room‐temperature operated ultrasensitive solution‐processed flexible broadband photodetectors with “vertical” device structure through solution‐processed transparent polymeric electrode.

     
    more » « less