skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Origins of the Photocurrent Multiplication Effect in the Polythiophene‐Based Photodetectors
Abstract The photocurrent multiplication (PM) effect has been used to boost the device performance of polymer‐based photodetectors (PDs), but its origin is rarely addressed. In this study, the origins of the PM effect in polymer PDs based on the P3HT:PC71BM bulk heterojunction (BHJ) composite thin film, where P3HT is poly(3‐hexylthiophene), and PC71BM is [6,6]phenyl‐C71‐butyric acid methyl ester, through both computational simulation and experimental investigation are reported. Systematic studies indicate that two key factors play an important role in the realization of the PM effect in polymer PDs. One factor is the work function of the metal electrode, and the other is the PC71BM aggregations at the interface between the P3HT:PC71BM BHJ composite thin film and the metal electrode. Moreover, the results from both experimental and computational simulation indicate that the values of the current density under light illumination minus the current density in the dark of polymer PDs are increased simultaneously along with the reduction of the thickness of the P3HT:PC71BM BHJ composite thin film. The results provide an understanding of the PM effect in polymer PDs and guidance for the development of high‐performance polymer PDs based on BHJ composite thin film.  more » « less
Award ID(s):
1903303
PAR ID:
10390324
Author(s) / Creator(s):
 ;  ;  ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Macromolecular Rapid Communications
Volume:
44
Issue:
1
ISSN:
1022-1336
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Bulk heterojunction polymer solar cells based on a novel combination of materials are fabricated using industry‐compliant conditions for large area manufacturing. The relatively low‐cost polymer PTQ10 is paired with the nonfullerene acceptor 4TIC‐4F. Devices are processed using a nonhalogenated solvent to comply with industrial usage in absence of any thermal treatment to minimize the energy footprint of the fabrication. No solvent additive is used. Adding the well‐known and low‐cost fullerene derivative PC61BM acceptor to this binary blend to form a ternary blend, the power conversion efficiency (PCE) is improved from 8.4% to 9.9% due to increased fill factor (FF) and open‐circuit voltage (VOC) while simultaneously improving the stability. The introduction of PC61BM is able to balance the hole–electron mobility in the ternary blends, which is favourable for high FF. This charge transport behavior is correlated with the bulk heterojunction (BHJ) morphology deduced from grazing‐incidence wide‐angle X‐ray scattering (GIWAXS), atomic force microscopy (AFM), and surface energy analysis. In addition, the industrial figure of merit (i‐FOM) of this ternary blend is found to increase drastically upon addition of PC61BM due to an increased performance–stability–cost balance. 
    more » « less
  2. Abstract Polymer solar cells (PSCs) with a bulk heterojunction (BHJ) device structure have incredible advantages, such as low‐cost fabrication and flexibility. However, the power conversion efficiency (PCE) of BHJ PSCs needs to be further improved to realize their practical applications. In this study, boosted PCEs from PSCs based on BHJ composites incorporated with Fe3O4magnetic nanoparticles (MNPs), aligned by an external magnetic field (EMF), are reported. It is found that the coercive electric field within the Fe3O4MNPs generated by the EMF has a strong and positive influence on the charge generation, which results in a more than 10% increase in free charge carriers. Moreover, the coercive electric field speeds up the charge carrier transport and suppresses charge carrier recombination within PSCs. In addition, a shortened extraction time makes charge carriers more likely to make it to the electrodes. As a result, more than 15% enhancement in PCE is observed from the PSCs based on the BHJ composite incorporated with the Fe3O4MNPs and the EMF as compared with that based on the BHJ composite thin film. This work indicates that the incorporation of MNPs and the EMF is a facile way to enhance the PCEs of PSCs. 
    more » « less
  3. Abstract Ultraviolet (UV), visible, and near‐infrared (NIR) broadband organic photodetectors are fabricated by sequential solution‐based thin film coatings of a polymer electron blocking layer (EBL) and a polymer photoactive layer. To avoid damage to a preceding polymer EBL during a subsequent solution‐based film coating of a polymer photoactive layer due to lack of solvent orthogonality, 2‐(((4‐azido‐2,3,5,6‐tetrafluorobenzoyl)oxy)methyl)−2‐ethylpropane‐1,3‐diyl bis(4‐azido‐2,3,5,6‐tetrafluorobenzoate) (FPA‐3F) is used as a novel organic cross‐linking agent activated by UV irradiation with a wavelength of 254 nm. Solution‐processed poly[N,N′‐bis(4‐butylphenyl)‐N,N′‐bis(phenyl)‐benzidine] (poly‐TPD) films, which are cross‐linked with a FPA‐3F photocrosslinker, are used for a preceding polymer EBL. A ternary blend film composed of PTB7‐Th, COi8DFIC, and PC71BM is used as a NIR‐sensitive organic photoactive layer with strong photosensitivity in multispectral (UV–visible–NIR) wavelengths of 300–1,050 nm. Poly‐TPD films are successfully cross‐linked even with a very small amount of 1 wt% FPA‐3F. Small amounts of FPA‐3F have little detrimental effect on the electrical and optoelectronic properties of the cross‐linked poly‐TPD EBL. Finally, organic NIR photodetectors with a poly‐TPD EBL cross‐linked by the small addition of FPA‐3F (1 wt%) show the detectivity values higher than 1 × 1012Jones for the entire UV–visible–NIR wavelengths from 300 nm to 1050 nm, and the maximum detectivity values of 1.41 × 1013Jones and 8.90 × 1012Jones at the NIR wavelengths of 900 and 1000 nm, respectively. 
    more » « less
  4. Broadband photodetectors (PDs) have great applications in both industrial and scientific sectors. In this study, solution-processed broadband PDs with an “inverted” vertical photodiode device structure without incorporating transparent conductive oxides electrodes, fabricated by bulk heterojunction (BHJ) composites composed of a low optical gap conjugated polymer blended with highly electrically conductive PbS quantum dots (QDs), operated at room temperature, are reported. The low optical gap conjugated polymer incorporated with PbS QDs contributes to the spectral response from the ultraviolet (UV)-visible to the infrared (IR) range. To realize the IR spectral response and to circumvent the weak IR transparency of the transparent oxide electrodes, the implementation of a photodiode with an “inverted” vertical device structure with the Au anode and the Ba/Al bilayer semitransparent cathode passivated with the MgF 2 layer is demonstrated. Photoinduced charge carrier transfer occurring within the BHJ composite gave rise to decent photocurrent, resulting in detectivities greater than 10 12 Jones (cm Hz 1/2 /W) over the wavelength from the UV-visible to the IR range under low applied bias. Thus, our findings of the utilization of the BHJ composites and an “inverted” vertical photodiode without the incorporation of the transparent conductive oxide electrodes provide a facile way to realize broadband PDs. 
    more » « less
  5. This work presents 3D printed polymer-based flexible electrode substrates exhibiting high surface area and flexibility in reverse electrowetting-on-dielectric energy harvesting for powering patchable human health monitoring sensors. Composite electrode substrates are printed using polydimethylsiloxane (PDMS) polymer and carbon black in 20:1 ratio by weight to provide some mechanical strength to the electrodes. Thin film layers of titanium for current collection and aluminum oxide as dielectric are deposited on the substrates to complete the electrode fabrication process. Without applying any bias voltage, the AC current due to periodic variance in capacitance resulting from mechanical modulation of an electrolyte droplet between two electrodes is measured for a low frequency range that falls within human motion activities. Mechanical integrity of the electrodes are characterized in terms of stress-strain analysis demonstrating robustness of their longevity. 
    more » « less