skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Solution-processed broadband photodetectors without transparent conductive oxide electrodes
Broadband photodetectors (PDs) have great applications in both industrial and scientific sectors. In this study, solution-processed broadband PDs with an “inverted” vertical photodiode device structure without incorporating transparent conductive oxides electrodes, fabricated by bulk heterojunction (BHJ) composites composed of a low optical gap conjugated polymer blended with highly electrically conductive PbS quantum dots (QDs), operated at room temperature, are reported. The low optical gap conjugated polymer incorporated with PbS QDs contributes to the spectral response from the ultraviolet (UV)-visible to the infrared (IR) range. To realize the IR spectral response and to circumvent the weak IR transparency of the transparent oxide electrodes, the implementation of a photodiode with an “inverted” vertical device structure with the Au anode and the Ba/Al bilayer semitransparent cathode passivated with the MgF 2 layer is demonstrated. Photoinduced charge carrier transfer occurring within the BHJ composite gave rise to decent photocurrent, resulting in detectivities greater than 10 12 Jones (cm Hz 1/2 /W) over the wavelength from the UV-visible to the IR range under low applied bias. Thus, our findings of the utilization of the BHJ composites and an “inverted” vertical photodiode without the incorporation of the transparent conductive oxide electrodes provide a facile way to realize broadband PDs.  more » « less
Award ID(s):
1903303
PAR ID:
10329833
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Journal of Materials Chemistry C
Volume:
10
Issue:
7
ISSN:
2050-7526
Page Range / eLocation ID:
2783 to 2791
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Room‐temperature solution‐processed flexible photodetectors with spectral response from 300 to 2600 nm are reported. Solution‐processed polymeric thin film with transparency ranging from 300 to 7000 nm and superior electrical conductivity as the transparent electrode is reported. Solution‐processed flexible broadband photodetectors with a “vertical” device structure incorporating a perovskite/PbSe quantum dot bilayer thin film based on the above solution‐processed transparent polymeric electrode are demonstrated. The utilization of perovskite/PbSe quantum dot bilayer thin film as the photoactive layer extends spectral response to infrared region and boosts photocurrent densities in both visible and infrared regions through the trap‐assisted photomultiplication effect. Operated at room temperature and under an external bias of ‐1 V, the solution‐processed flexible photodetectors exhibit over 230 mA W‐1responsivity, over 1011 cm Hz1/2/W photodetectivity from 300 to 2600 nm and ≈70 dB linear dynamic ranges. It is also found that the solution‐processed flexible broadband photodetectors exhibit fast response time and excellent flexibility. All these results demonstrate that this work develop a facile approach to realize room‐temperature operated ultrasensitive solution‐processed flexible broadband photodetectors with “vertical” device structure through solution‐processed transparent polymeric electrode. 
    more » « less
  2. Abstract The photocurrent multiplication (PM) effect has been used to boost the device performance of polymer‐based photodetectors (PDs), but its origin is rarely addressed. In this study, the origins of the PM effect in polymer PDs based on the P3HT:PC71BM bulk heterojunction (BHJ) composite thin film, where P3HT is poly(3‐hexylthiophene), and PC71BM is [6,6]phenyl‐C71‐butyric acid methyl ester, through both computational simulation and experimental investigation are reported. Systematic studies indicate that two key factors play an important role in the realization of the PM effect in polymer PDs. One factor is the work function of the metal electrode, and the other is the PC71BM aggregations at the interface between the P3HT:PC71BM BHJ composite thin film and the metal electrode. Moreover, the results from both experimental and computational simulation indicate that the values of the current density under light illumination minus the current density in the dark of polymer PDs are increased simultaneously along with the reduction of the thickness of the P3HT:PC71BM BHJ composite thin film. The results provide an understanding of the PM effect in polymer PDs and guidance for the development of high‐performance polymer PDs based on BHJ composite thin film. 
    more » « less
  3. Abstract Polymer solar cells (PSCs) with a bulk heterojunction (BHJ) device structure have incredible advantages, such as low‐cost fabrication and flexibility. However, the power conversion efficiency (PCE) of BHJ PSCs needs to be further improved to realize their practical applications. In this study, boosted PCEs from PSCs based on BHJ composites incorporated with Fe3O4magnetic nanoparticles (MNPs), aligned by an external magnetic field (EMF), are reported. It is found that the coercive electric field within the Fe3O4MNPs generated by the EMF has a strong and positive influence on the charge generation, which results in a more than 10% increase in free charge carriers. Moreover, the coercive electric field speeds up the charge carrier transport and suppresses charge carrier recombination within PSCs. In addition, a shortened extraction time makes charge carriers more likely to make it to the electrodes. As a result, more than 15% enhancement in PCE is observed from the PSCs based on the BHJ composite incorporated with the Fe3O4MNPs and the EMF as compared with that based on the BHJ composite thin film. This work indicates that the incorporation of MNPs and the EMF is a facile way to enhance the PCEs of PSCs. 
    more » « less
  4. Abstract The challenge of fabricating transparent and conductive (T/C) films and patterns for applications in flexible electronics, touch screens, solar cells, and smart windows remains largely unsolved. Traditional fabrication techniques are complex, costly, time‐consuming, and struggle to achieve the necessary precision and accuracy over electronic and optical properties. Here, hypersurface photolithography (HP), which integrates microfluidics, a digital micromirror device, and photochemical surface‐initiated polymerizations is used to create polymer brush patterns. The high‐throughput optimization enabled by HP provides conditions to fabricate patterns composed of cross‐linked polymer brushes containing Au‐binding 2‐vinylpyrrolidine (2VP) groups with precise control over the height and the composition at each pixel. Au nanoparticles (AuNPs) are incorporated into the polymer brush patterns through in situ reduction of Au ions, resulting in T/C composite AuNP/polymer brush patterns. The sheet resistance at 100 mA of a 2VP‐AuNP‐functionalized patterns on a glass substrate is 0.42 Ω sq−1with 86% transmittance of visible light. Additional patterns demonstrate multiplexing by copatterning rhodamine B functionalized fluorescent polymer brushes and AuNP/polymer brush conductive domains. This work solves the challenge of creating T/C films by forming metal‐polymer composites from polymer brush patterns, offering a scalable solution for electronic and optical device development and fabrication. 
    more » « less
  5. Abstract Colloidal quantum dots (QDs)/graphene nanohybrids provide a unique platform to design photodetectors of high performance. These photodetectors are quantum sensors due to the strong quantum confinement in QDs for spectral tunability, and in graphene for high charge mobility. Quantitatively, the high carrier mobility of graphene plays a critical role to enable high photoconductive gain and understanding its impact on the photodetector performance is imperative. Herein, we report a comparative study of PbS QDs/graphene nanohybrids with monolayer and bilayer graphene for broadband photodetection ranging from ultraviolet, visible, near-infrared to short-wave infrared spectra (wavelength: 400 nm–1750 nm) to determine if a specific advantage exists for one over the other. This study has revealed that both the monolayer and bilayer graphene grown in chemical vapor deposition can provide a highly efficient charge transfer channel for photo-generated carriers for high broadband photoresponse. 
    more » « less