skip to main content


Title: Integration of a functionalized graphene nano-network into a planar perovskite absorber for high-efficiency large-area solar cells
Efficient charge collection is critical in large area (quasi-) planar configuration perovskite solar cells (PSCs) as the cell operation relies on the diffusion of photo-generated charge carriers to charge collector layers. Many defects/traps in the polycrystalline perovskite absorber layer strongly affect the charge collection efficiency because the 2D-like top charge collection layer barely penetrates into the 3D grain boundaries in the perovskite layer to efficiently collect the charge carrier. Inspired by blood capillaries for efficient mass exchange, a charge-collection nano-network for efficient charge collection was incorporated into the perovskite absorber using low-cost, stable amino-functionalized graphene (G-NH 2 ). The integration of such an unprecedented structure enables very efficient charge collection, leading to the significant enhancement of the power conversion efficiency of 1 × 1 cm 2 MAPbI 3 PSCs from 14.4 to 18.7% with higher reproducibility, smaller hysteresis and enhanced stability. The physicochemical mechanisms underlying the role of this nano charge-collection nano-network in boosting the charge collection in PSCs are elucidated comprehensively, using a combined experimental and theoretical approach, pointing to a new direction towards up-scaling of high-efficiency PSCs.  more » « less
Award ID(s):
1538893
NSF-PAR ID:
10092614
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Materials Horizons
Volume:
5
Issue:
5
ISSN:
2051-6347
Page Range / eLocation ID:
868 to 873
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Perovskites have been firmly established as one of the most promising materials for third-generation solar cells. There remain several great and lingering challenges to be addressed regarding device efficiency and stability. The photovoltaic efficiency of perovskite solar cells (PSCs) depends drastically on the charge-carrier dynamics. This complex process includes charge-carrier generation, extraction, transport and collection, each of which needs to be modulated in a favorable manner to achieve high performance. Two-dimensional materials (TDMs) including graphene and its derivatives, transition metal dichalcogenides ( e.g. , MoS 2 , WS 2 ), black phosphorus (BP), metal nanosheets and two-dimensional (2D) perovskite active layers have attracted much attention for application in perovskite solar cells due to their high carrier mobility and tunable work function properties which greatly impact the charge carrier dynamics of PSCs. To date, significant advances have been achieved in the field of TDM-based PSCs. In this review, the recent progress in the development and application of TDMs ( i.e. , graphene, graphdiyne, transition metal dichalcogenides, BP, and others) as electrodes, hole transporting layers, electron transporting layers and buffer layers in PSCs is detailed. 2D perovskites as active absorber materials in PSCs are also summarized. The effect of TDMs and 2D perovskites on the charge carrier dynamics of PSCs is discussed to provide a comprehensive understanding of their optoelectronic processes. The challenges facing the PSC devices are emphasized with corresponding solutions to these problems provided with the overall goal of improving the efficiency and stability of photovoltaic devices. 
    more » « less
  2. null (Ed.)
    While typical perovskite solar cells (PSCs) with doped Spiro-OMeTAD as a hole transport material (HTM) have shown rapid increase in their power-conversion efficiencies (PCEs), their poor stability remains a big concern as the dopants and additives used with Spiro-OMeTAD have a strong tendency to diffuse into and degrade the perovskite active layer under normal operating conditions. Aiming to push forward the development of PSCs, many dopant-free small-molecular HTMs have been reported based on energetic considerations for charge transfer and criteria for charge transport. However, the PCEs of the state-of-the-art PSCs with dopant-free small-molecular HTMs are still inferior to those using doped Spiro-OMeTAD, and little attention has been paid to the interactions between the HTM and perovskite absorber in PSCs. Here, we report a facile design concept to functionalize HTMs so that they can passivate perovskite surface defects and enable perovskite active layers with lower density of surface trap states and more efficient charge transfer to the hole transport layer. As a consequence, perovskite solar cells with a functionalized HTM exhibit a champion PCE of 22.4%, the highest value for PSCs using dopant-free small molecular HTMs to date, and substantively improved operational stability under continuous illumination. With a T 80 of (1617 ± 7) h for encapsulated cells tested at 30 °C in air, the PSCs containing the functionalized HTM are among the most stable PSCs using dopant-free small-molecular HTMs. The effectiveness of our strategy is demonstrated in PSCs comprising both a state-of-the-art MA-free perovskite and MAPbI, a system having more surface defects, and implies the potential generality of our strategy for a broad class of perovskite systems, to further advance highly efficient and stable solar cells. 
    more » « less
  3. Abstract

    Flexible perovskite solar cells (f‐PSCs) have attracted great attention due to their promising commercial prospects. However, the performance off‐PSCs is generally worse than that of their rigid counterparts. Herein, it is found that the unsatisfactory performance of planar heterojunction (PHJ)f‐PSCs can be attributed to the undesirable morphology of electron transport layer (ETL), which results from the rough surface of the flexible substrate. Precise control over the thickness and morphology of ETL tin dioxide (SnO2) not only reduces the reflectance of the indium tin oxide (ITO) on polyethylene 2,6‐naphthalate (PEN) substrate and enhances photon collection, but also decreases the trap‐state densities of perovskite films and the charge transfer resistance, leading to a great enhancement of device performance. Consequently, thef‐PSCs, with a structure of PEN/ITO/SnO2/perovskite/Spiro‐OMeTAD/Ag, exhibit a power conversion efficiency (PCE) up to 19.51% and a steady output of 19.01%. Furthermore, thef‐PSCs show a robust bending resistance and maintain about 95% of initial PCE after 6000 bending cycles at a bending radius of 8 mm, and they present an outstanding long‐term stability and retain about 90% of the initial performance after >1000 h storage in air (10% relative humidity) without encapsulation.

     
    more » « less
  4. In a mesoporous hybrid perovskite solar cell (PSC), the mesoporous scaffold plays key roles in controlling the crystallization of the perovskite material and in the charge carrier transport, and hence is critical for developing highly efficient PSCs. Here we report a study on blending micrometer-long TiO 2 nanorods (NRs) into the commonly used nanoparticles (NPs) to optimize the mesoporous structure, with the aim of enhancing the perovskite material loading and connectivity as well as light harvesting. It was found that with 5–10% of NR incorporation, a uniform scaffold can be spin-coated and the PSC performance was improved. In comparison to the pure NP-based device, the power conversion efficiency was increased by about 27% when 10% of the NRs were incorporated, due to enhanced light harvesting and charge collection. However, with more NR blending, a homogeneous scaffold cannot be formed, resulting in PSC performance degradation. These findings contribute to a better design of mesoporous scaffolds for high-performance PSCs. 
    more » « less
  5. Abstract

    Formamidinium (FA)‐based lead iodide perovskites have emerged as the most promising light‐absorber materials in the prevailing perovskite solar cells (PSCs). However, they suffer from the phase‐instability issue in the ambient atmosphere, which is holding back the realization of the full potential of FA‐based PSCs in the context of high efficiency and stability. Herein, the tetraethylorthosilicate hydrolysis process is integrated with the solution crystallization of FA‐based perovskites, forming a new film structure with individual perovskite grains encapsulated by amorphous silica layers that are in situ formed at the nanoscale. The silica not only protects perovskite grains from the degradation but also enhances the charge‐carrier dynamics of perovskite films. The underlying mechanism is discussed using a joint experiment‐theory approach. Through this in situ grain encapsulation method, PSCs show an efficiency close to 20% with an impressive 97% retention after 1000‐h storage under ambient conditions.

     
    more » « less