In this paper, we use Polyethylene Oxide (PEO) particles to control the morphology of Formamidinium (FA)-rich perovskite films and achieve large grains with improved optoelectronic properties. Consequently, a planar perovskite solar cell (PSC) is fabricated with additions of 5 wt% of PEO, and the highest PCE of 18.03% was obtained. This solar cell is also shown to retain up to 80% of its initial PCE after about 140 h of storage under the ambient conditions (average relative humidity of 62.5 ± 3.25%) in an unencapsulated state. Furthermore, the steady-state PCE of the PEO-modified PSC device remained stable for long (over 2500 s) under continuous illumination. This addition of PEO particles is shown to enable the tuning of the optoelectronic properties of perovskite films, improvements in the overall photophysical properties of PSCs, and an increase in resistance to the degradation of PSCs.
Formamidinium (FA)‐based lead iodide perovskites have emerged as the most promising light‐absorber materials in the prevailing perovskite solar cells (PSCs). However, they suffer from the phase‐instability issue in the ambient atmosphere, which is holding back the realization of the full potential of FA‐based PSCs in the context of high efficiency and stability. Herein, the tetraethylorthosilicate hydrolysis process is integrated with the solution crystallization of FA‐based perovskites, forming a new film structure with individual perovskite grains encapsulated by amorphous silica layers that are in situ formed at the nanoscale. The silica not only protects perovskite grains from the degradation but also enhances the charge‐carrier dynamics of perovskite films. The underlying mechanism is discussed using a joint experiment‐theory approach. Through this in situ grain encapsulation method, PSCs show an efficiency close to 20% with an impressive 97% retention after 1000‐h storage under ambient conditions.
more » « less- Award ID(s):
- 1538893
- PAR ID:
- 10067080
- Publisher / Repository:
- Wiley Blackwell (John Wiley & Sons)
- Date Published:
- Journal Name:
- Advanced Energy Materials
- Volume:
- 8
- Issue:
- 22
- ISSN:
- 1614-6832
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Abstract Perovskite solar cells (PSCs) have rapidly emerged as one of the hottest topics in the photovoltaics community owing to their high power‐conversion efficiencies (PCE), and the promise to be produced at low cost. Among various PSCs, typical 3D perovskite‐based solar cells deliver high PCE but they suffer from severe instability, which restricts their practical applications. In contrast to 3D perovskites, 2D perovskites that incorporate larger, less volatile, and generally more hydrophobic organic cations exhibit much improved thermal, chemical, and environmental stability. 2D perovskites can have different roles within a solar cell, either as the primary light absorber (2D PSCs), or as a capping layer atop a 3D perovskite absorbing layer (2D/3D PSCs). Tradeoffs between PCE and stability exist in both types of PSCs—2D PSCs are more stable but exhibit lower efficiency while 2D/3D PSCs deliver exciting efficiency but show relatively poor stability. To address this PCE/stability tradeoff, the challenges both the 2D and 2D/3D PSCs face are identified and select works the community has undertaken to overcome them are highlighted in this review. It is ended with several recommendations on how to further improve PSCs so their performance and stability can be commensurate with application requirements.
-
Abstract Composition and film quality of perovskite are crucial for the further improvement of perovskite solar cells (PSCs), including efficiency, reproducibility, and stability. Here, it is demonstrated that by simply mixing 50% of formamidinium (FA+) into methylammonium lead iodide (MAPbI3), a highly crystalline, stable phase, and compact, polycrystalline grain morphology perovskite is formed by using a solvent‐mediated phase transformation process via the synergism of dimethyl sulfoxide and diethyl ether, which shows long carrier lifetime, low trap state density, and a record certified 21.8% power conversion efficiency (PCE) in pure‐iodide, alkaline‐metal‐free MA0.5FA0.5PbI3perovskite‐based PSCs. These PSCs show very high operational stability, with 85% PCE retention upon 1000 h 1 Sun intensity illumination. A 17.33% PCE module (6.5 × 7 cm2) is also demonstrated, attesting to the scalability of such devices.
-
Abstract Typical lead‐based perovskites solar cells show an onset of photogeneration around 800 nm, leaving plenty of spectral loss in the near‐infrared (NIR). Extending light absorption beyond 800 nm into the NIR should increase photocurrent generation and further improve photovoltaic efficiency of perovskite solar cells (PSCs). Here, a simple and facile approach is reported to incorporate a NIR‐chromophore that is also a Lewis‐base into perovskite absorbers to broaden their photoresponse and increase their photovoltaic efficiency. Compared with pristine PSCs without such an organic chromophore, these solar cells generate photocurrent in the NIR beyond the band edge of the perovskite active layer alone. Given the Lewis‐basic nature of the organic semiconductor, its addition to the photoactive layer also effectively passivates perovskite defects. These films thus exhibit significantly reduced trap densities, enhanced hole and electron mobilities, and suppressed illumination‐induced ion migration. As a consequence, perovskite solar cells with organic chromophore exhibit an enhanced efficiency of 21.6%, and substantively improved operational stability under continuous one‐sun illumination. The results demonstrate the potential generalizability of directly incorporating a multifunctional organic semiconductor that both extends light absorption and passivates surface traps in perovskite active layers to yield highly efficient and stable NIR‐harvesting PSCs.
-
Abstract State‐of‐the‐art perovskite solar cells (PSCs) have bandgaps that are invariably larger than 1.45 eV, which limits their theoretically attainable power conversion efficiency. The emergent mixed‐(Pb, Sn) perovskites with bandgaps of 1.2–1.3 eV are ideal for single‐junction solar cells according to the Shockley–Queisser limit, and they have the potential to deliver higher efficiency. Nevertheless, the high chemical activity of Sn(II) in these perovskites makes it extremely challenging to control their physical properties and chemical stability, thereby leading to PSCs with relatively low PCE and stability. In this work, the authors employ the Lewis‐adduct SnF2·3FACl additive in the solution‐processing of ideal‐bandgap halide perovskites (IBHPs), and prepare uniform large‐grain perovskite thin films containing continuously functionalized grain boundaries with the stable SnF2phase. Such Sn(II)‐rich grain‐boundary networks significantly enhance the physical properties and chemical stability of the IBHP thin films. Based on this approach, PSCs with an ideal bandgap of 1.3 eV are fabricated with a promising efficiency of 15.8%, as well as enhanced stability. The concept of Lewis‐adduct‐mediated grain‐boundary functionalization in IBHPs presented here points to a new chemical route for approaching the Shockley–Queisser limit in future stable PSCs.