skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Sampling type method combined with deep learning for inverse scattering with one incident wave
We consider the inverse problem of determining the geometry of penetrable objects from scattering data generated by one incident wave at a fixed frequency. We first study an orthogonality sampling type method which is fast, simple to implement, and robust against noise in the data. This sampling method has a new imaging functional that is applicable to data measured in near field or far field regions. The resolution analysis of the imaging functional is analyzed where the explicit decay rate of the functional is established. A connection with the orthogonality sampling method by Potthast is also studied. The sampling method is then combined with a deep neural network to solve the inverse scattering problem. This combined method can be understood as a network using the image computed by the sampling method for the first layer and followed by the U-net architecture for the rest of the layers. The fast computation and the knowledge from the results of the sampling method help speed up the training of the network. The combination leads to a significant improvement in the reconstruction results initially obtained by the sampling method. The combined method is also able to invert some limited aperture experimental data without any additional transfer training.  more » « less
Award ID(s):
1812693
PAR ID:
10381996
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
AMS Contemporary Mathematics
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract This paper is concerned with imaging of 3D scattering objects with experimental data from the Fresnel database. The first goal of the paper is to investigate a modified version of the orthogonality sampling method (OSM) by Harris and Nguyen [2020 SIAM J. Sci. Comput. 42 B72–737] for the imaging problem. The advantage of the modified OSM over its original version lies in its applicability to more types of polarization vectors associated with the electromagnetic scattering data. We analyze the modified OSM using the factorization analysis for the far field operator and the Funk–Hecke formula. The second goal is to verify the performance of the modified OSM, the OSM, and the classical factorization method for the 3D Fresnel database. The modified OSM we propose is able to invert the sparse and limited-aperture real data in a fast, simple, and efficient way. It is also shown in the real data verification that the modified OSM performs better than its original version and the factorization method. 
    more » « less
  2. Nguyen, Dinh-Liem; Nguyen, Loc; Nguyen, Thi-Phong (Ed.)
    This paper is concerned with the numerical solution to the direct and inverse electromagnetic scattering problem for bi-anisotropic periodic structures. The direct problem can be reformulated as an integro-di erential equation. We study the existence and uniqueness of solution to the latter equation and analyze a spectral Galerkin method to solve it. This spectral method is based on a periodization technique which allows us to avoid the evaluation of the quasiperiodic Green's tensor and to use the fast Fourier transform in the numerical implementation of the method. For the inverse problem, we study the orthogonality sampling method to reconstruct the periodic structures from scattering data generated by only two incident fields. The sampling method is fast, simple to implement, regularization free, and very robust against noise in the data. Numerical examples for both direct and inverse problems are presented to examine the efficiency of the numerical solvers. 
    more » « less
  3. This paper presents a numerical method for solving the inverse problem of reconstructing the shape of periodic structures from scattering data. This inverse problem is motivated by applications in the nondestructive evaluation of photonic crystals. The numerical method belongs to the class of sampling methods that aim to construct an imaging function for the shape of the periodic structure using scattering data. By extending the results of Nguyen, Stahl, and Truong [Inverse Problems, 39:065013, 2023], we studied a simple imaging function that uses half the data required by the numerical method in the cited paper. Additionally, this imaging function is fast, simple to implement, and very robust against noise in the data. Both isotropic and anisotropic cases were investigated, and numerical examples were presented to demonstrate the performance of the numerical method. 
    more » « less
  4. null (Ed.)
    Abstract This paper is concerned with the inverse scattering problem for the three-dimensional Maxwell equations in bi-anisotropic periodic structures.The inverse scattering problem aims to determine the shape of bi-anisotropic periodic scatterers from electromagnetic near-field data at a fixed frequency.The factorization method is studied as an analytical and numerical tool for solving the inverse problem.We provide a rigorous justification of the factorization method which results in the unique determination and a fast imaging algorithm for the periodic scatterer.Numerical examples for imaging three-dimensional periodic structures are presented to examine the efficiency of the method. 
    more » « less
  5. In this paper, we consider the inverse problem of recovering a sound soft scatterer from the measured scattered field. The scattered field is assumed to be induced by a point source on a curve/surface that is known. Here, we propose and analyze new direct sampling methods for this problem. The first method we consider uses a far-field transformation of the near-field data, which allows us to derive explicit bounds in the resolution analysis for the direct sampling method’s imaging functional. Two direct sampling methods are studied, using the far-field transformation. For these imaging functionals, we use the Funk–Hecke identities to study the resolution analysis. We also study a direct sampling method for the case of the given Cauchy data. Numerical examples are given to show the applicability of the new imaging functionals for recovering a sound soft scatterer with full and partial aperture data. 
    more » « less