skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Asymmetric synthesis of pharmaceutically relevant 1-aryl-2-heteroaryl- and 1,2-diheteroarylcyclopropane-1-carboxylates
This study describes general methods for the enantioselective syntheses of pharmaceutically relevant 1-aryl-2-heteroaryl- and 1,2-diheteroarylcyclopropane-1-carboxylates through dirhodium tetracarboxylate-catalysed asymmetric cyclopropanation of vinyl heterocycles with aryl- or heteroaryldiazoacetates. The reactions are highly diastereoselective and high asymmetric induction could be achieved using either ( R )-pantolactone as a chiral auxiliary or chiral dirhodium tetracarboxylate catalysts. For meta - or para -substituted aryl- or heteroaryldiazoacetates the optimum catalyst was Rh 2 ( R-p -Ph-TPCP) 4 . In the case of ortho -substituted aryl- or heteroaryldiazoacetates, the optimum catalyst was Rh 2 ( R -TPPTTL) 4 . For a highly enantioselective reaction with the ortho -substituted substrates, 2-chloropyridine was required as an additive in the presence of either 4 Å molecular sieves or 1,1,1,3,3,3-hexafluoroisopropanol (HFIP). Under the optimized conditions, the cyclopropanation could be conducted in the presence of a variety of heterocycles, such as pyridines, pyrazines, quinolines, indoles, oxadiazoles, thiophenes and pyrazoles.  more » « less
Award ID(s):
1956154 1700982
PAR ID:
10329965
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Chemical Science
Volume:
12
Issue:
33
ISSN:
2041-6520
Page Range / eLocation ID:
11181 to 11190
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Regio‐ and stereoselective distal allylic/benzylic C−H functionalization of allyl and benzyl silyl ethers was achieved using rhodium(II) carbenes derived from N‐sulfonyltriazoles and aryldiazoacetates as carbene precursors. The bulky rhodium carbenes led to highly site‐selective functionalization of less activated allylic and benzylic C−H bonds even in the presence of electronically preferred C−H bonds located α to oxygen. The dirhodium catalyst Rh2(S‐NTTL)4is the most effective chiral catalyst for triazole‐derived carbene transformations, whereas Rh2(S‐TPPTTL)4works best for carbenes derived from aryldiazoacetates. The reactions afford a variety of δ‐functionalized allyl silyl ethers with high diastereo‐ and enantioselectivity. The utility of the present method was demonstrated by its application to the synthesis of a 3,4‐disubstitutedl‐proline scaffold. 
    more » « less
  2. Abstract (Diene)Rh(I) complexes catalyze the stereoselective three‐component coupling of silyl glyoxylates, arylboronic acids, and aldehydes to give glycolate aldol products. The participation of Rh‐alkoxides in the requisite Brook rearrangement was established through two component Rh‐catalyzed couplings of silyl glyoxylates with ArB(OH)2to give silyl‐protected mandelate derivatives. The intermediacy of a chiral Rh‐enolate was inferred through enantioselective protonation using a chiral Rh‐catalyst. Diastereoselective three‐component couplings with aldehydes as terminating electrophiles to give racemic products were best achieved with a bulky aryl ester on the silyl glyoxylate reagent. Optimal enantioselective couplings were carried out with thetert‐butyl ester variant using an anisole‐derived enantiopure tricyclo[3.2.2.02,4]nonadiene ligand. 
    more » « less
  3. Enantioselective quaternary carbon construction in the assembly of cyclopentenones employing a Rh II -catalyzed, formal [4+1]-cycloaddition is described. A Rh 2 ( S -TCPTTL) 4 -catalyzed cyclopropanation of a vinyl ketene with a disubstituted diazo compound initiates a stereoretentive, accelerated ring expansion to provide the cycloadduct in good to excellent yields and enantioselectivity. 
    more » « less
  4. Abstract Three BINOL‐based unsymmetric chiral dialdehydes, (S)‐4, (S)‐5, and (S)‐6, each containing a salicylaldehyde moiety and anortho‐,meta‐ orpara‐substituted benzaldehyde unit, are synthesized and used to react with the enantiomers of an unsymmetric chiral diamine, lysine. These reactions represent the first examples of regioselective as well as enantioselective reactions of an unsymmetric chiral dialdehyde with an unsymmetric chiral diamine to generate unsymmetric chiral macrocycles. The addition of Zn2+can further enhance the selectivity for the macrocycle formation. Compounds (S)‐4and (S)‐5are found to exhibit chemoselective and enantioselective fluorescent recognition of lysine in the presence of Zn2+
    more » « less
  5. Abstract Computational studies revealed that dirhodium tetrakis(1,2,2‐triarylcyclopropanecarboxylate) (Rh2(TPCP)4) catalysts adopt distinctive high symmetry orientations, which are dependent on the nature of the aryl substitution pattern. The parent catalyst, Rh2(TPCP)4, and those with ap‐substituent at the C1 aryl, such as Rh2(p‐BrTPCP)4and Rh2(p‐PhTPCP)4, adopt aC2‐symmetric structure. Rh2(3,5‐di(p‐tBuC6H4)TPCP)4, 3,5‐disubstituted at the C1 aryl, adopts aD2‐symmetric structure, whereas catalysts with ano‐substituent at the C1 aryl, such as Rh2(o‐Cl‐5‐BrTPCP)4,adopt aC4‐symmetric structure. 
    more » « less