skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Climate Change Driving Widespread Loss of Coastal Forested Wetlands Throughout the North American Coastal Plain
Coastal forested wetlands support many endemic species, sequester substantial carbon stocks, and have been reduced in extent due to historic drainage and agricultural expansion. Many of these unique coastal ecosystems have been drained, while those that remain are now threatened by saltwater intrusion and sea level rise in hydrologically modified coastal landscapes. Several recent studies have documented rapid and accelerating losses of coastal forested wetlands in small areas of the Atlantic and Gulf coasts of North America, but the full extent of loss across North America’s Coastal Plain (NACP) has not been quantified. We used classified satellite imagery to document a net loss of  13,682 km2 (8%) of forested coastal wetlands across the NACP between 1996 and 2016. Most forests transitioned to scrub-shrub (53%) and marsh habitats (24%). Even within protected areas, we measured substantial rates of wetland deforestation and significant fragmentation of forested wetland habitats. Variation in the rate of sea level rise, the number of tropical storm landings, and the average elevation of coastal watersheds explained about 78% of the variation in coastal wetland deforestation extent along the south Atlantic and Gulf Coasts. The rate of coastal forest loss within the NACP (684 km2/y) exceeds the recent estimate of global losses of coastal mangroves (210 km2/y). At the current rate of deforestation, in the absence of widespread protection or restoration efforts, coastal forested wetlands may not persist into the next century.  more » « less
Award ID(s):
2005574
PAR ID:
10330041
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Ecosystems
ISSN:
1432-9840
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. NA (Ed.)
    Coastal wetlands are vulnerable to accelerated sea-level rise, yet knowledge about their extent and distribution is often limited. We developed a land cover classification of wetlands in the coastal plains of the southern United States along the Gulf of Mexico (Texas, Louisiana, Mississippi, Alabama, and Florida) using 6161 very-high (2 m per pixel) resolution WorldView-2 and WorldView-3 satellite images from 2012 to 2015. Area extent estimations were obtained for the following vegetated classes: marsh, scrub, grass, forested upland, and forested wetland, located in elevation brackets between 0 and 10 m above sea level at 0.1 m intervals. Sea-level trends were estimated for each coastal state using tide gauge data collected over the period 1983–2021 and projected for 2100 using the trend estimated over that period. These trends were considered conservative, as sea level rise in the region accelerated between 2010 and 2021. Estimated losses in vegetation area due to sea level rise by 2100 are projected to be at least 12,587 km2, of which 3224 km2 would be coastal wetlands. Louisiana is expected to suffer the largest losses in vegetation (80%) and coastal wetlands (75%) by 2100. Such high-resolution coastal mapping products help to guide adaptation plans in the region, including planning for wetland conservation and coastal development. 
    more » « less
  2. Abstract Sea‐level dynamics, sediment availability, and marine energy are critical drivers of coastal wetland formation and persistence, but their roles as continental‐scale drivers remain unknown. We evaluated the timing and spatial variability of wetland formation from new and existing cores collected along the Atlantic and Gulf coasts of the United States. Most basal peat ages occurred after sea‐level rise slowed (after ~4,000 years before present), but predominance of sea‐level rise studies may skew age estimates toward older sites. Near‐coastal sites tended to be younger, indicating creation of wetlands through basin infilling and overwash events. Age distributions differed among regions, with younger wetlands in the northeast and southeast corresponding to European colonization and deforestation. Across all cores, wetland age correlated strongly with basal peat depth. Marsh age elucidates the complex interactions between sea‐level rise, sediment supply, and geomorphic setting in determining timing and location of marsh formation and future wetland persistence. 
    more » « less
  3. We review the functioning and sustainability of coastal marshes and mangroves. Urbanized humans have a 7,000-year-old enduring relationship to coastal wetlands. Wetlands include marshes, salt flats, and saline and freshwater forests. Coastal wetlands occur in all climate zones but are most abundant in deltas. Mangroves are tropical, whereas marshes occur from tropical to boreal areas. Quantification of coastal wetland areas has advanced in recent years but is still insufficiently accurate. Climate change and sea-level rise are predicted to lead to significant wetland losses and other impacts on coastal wetlands and the humans associated with them. Landward migration and coastal retreat are not expected to significantly reduce coastal wetland losses. Nitrogen watershed inputs are unlikely to alter coastal marsh stability because watershed loadings are mostly significantly lower than those in fertilization studies that show decreased belowground biomass and increased decomposition of soil organic matter. Blue carbon is not expected to significantly reduce climate impacts. The high values of ecosystem goods and services of wetlands are expected to be reduced by area losses. Humans have had strong impacts on coastal wetlands in the Holocene, and these impacts are expected to increase in the Anthropocene. 
    more » « less
  4. Blue carbon habitats, such as mangroves and salt marshes, have been recognized as carbon burial hotspots; however, methods on measuring blue carbon stocks have varied and thus leave uncertainty in global blue carbon stock estimates. This study analyzes blue carbon stocks in northern Florida wetlands along the Atlantic and Gulf coasts. Carbon measurements within 1–3m length vibracores yield total core stocks of 9.9–21.5 kgC·m −2 and 7.7–10.9 kgC·m −2 for the Atlantic and Gulf coast cores, respectively. Following recent IPCC guidelines, blue carbon stock estimates in the top meter are 7.0 kgC·m −2 –8.0 kgC·m −2 and 6.1 kgC·m −2 –8.6 kgC·m −2 for the Atlantic and Gulf cores, respectively. Changes in stable isotopic (δ 13 C, C/N) and lignin biomarker (C/V) indices suggest both coastlines experienced salt marsh and mangrove transgressions into non-blue carbon habitats during the mid- to late-Holocene following relative sea-level rise. These transgressions impact carbon storage within the cores as the presence of carbon-poor soils, characteristic of non-blue carbon habitats, result in lower 1m carbon stocks in north Florida Gulf wetlands, and a deeper extent of carbon-rich soils, characteristic of blue carbon habitats, drive higher 1m and total carbon stocks in north Florida Atlantic wetlands. Future blue carbon research should assess carbon stocks down to bedrock when possible, as land-cover and/or climate change can impact different depths across localities. Ignoring carbon-rich soil below the top meter of soil may underestimate potential carbon emissions based on these changes. 
    more » « less
  5. Abstract Coastal wetlands provide essential ecosystem goods and services but are extremely vulnerable to sea‐level rise, extreme climate, and human activities, especially the coastal wetlands in large river deltas, which are regarded as “natural recorders” of changes in estuarine environments. In addition to the area (loss or gain) and quality (degradation or improvement) of coastal wetlands, the information on coastal wetland structure (e.g., patch size and number) are also major metrics for coastal restoration and biodiversity protection, but remain very limited in China's four major river deltas. In this study, we quantified the spatial–temporal dynamics of total area (TA) and patch number (PN) of coastal wetlands with different sizes in the four deltas and the protected areas (PAs) and assessed the effects of major driving factors during 1984–2020. We also investigated the effectiveness of PAs through the comparison of TA and PN of coastal wetlands before and after the years in which PAs were listed as Ramsar Sites. We found both TA and PN experienced substantial losses in the Liaohe River Delta and Yellow River Delta but recent recoveries in the Yangtze River Delta. The coastal wetlands had a relatively stable and variable trend in TA but had a continually increasing trend in PN in the Pearl River Delta. Furthermore, reduced coastal reclamation, ecological restoration projects, and rapid expansion of invasive plants had great impacts on the coastal wetland structure in various ways. We also found that PAs were effective in halting the decreasing trends in coastal wetland areas and slowing the expansion of reclamation, but the success of PAs is being counteracted by soaring exotic plant invasions. Our findings provide vital information for the government and the public to address increasing challenges of coastal restoration, management, and sustainability in large river deltas. 
    more » « less