skip to main content


Title: Supramolecular Incarceration and Extraction of Tetrafluoroberyllate from Water by Nanojars
The previously unexplored noncovalent binding of the highly toxic tetrafluoroberyllate anion (BeF42–) and its extraction from water into organic solvents are presented. Nanojars resemble anion-binding proteins in that they also possess an inner anion binding pocket lined by a multitude of H-bond donors (OH groups), which wrap around the incarcerated anion and completely isolate it from the surrounding medium. The BeF4-binding propensity of [BeF4⊂{CuII(OH)(pz)}n]2– (pz = pyrazolate; n = 27–32) nanojars of different sizes is investigated using an array of techniques including mass spectrometry, paramagnetic 1H, 9Be, and 19F NMR spectroscopy, and X-ray crystallography, along with thermal stability studies in solution and chemical stability studies toward acidity and Ba2+ ions. The latter is found to be unable to precipitate the insoluble BaBeF4 from nanojar solutions, indicating a very strong binding of the BeF42– anion by nanojars. 9Be and 19F NMR spectroscopy allows for the unprecedented direct probing of the incarcerated anion in a nanojar and, along with 1H NMR studies, reveals the fluxional structure of nanojars and their inner anion-binding pockets. Single-crystal X-ray diffraction provides the crystal and molecular structures of (Bu4N)2[BeF4⊂{Cu(OH)(pz)}32], which contains a novel Cux-ring combination (x = 9 + 14 + 9), (Bu4N)2[BeF4⊂{Cu(OH)(pz)}8+14+9], and (Bu4N)2[BeF4⊂{Cu(OH)(pz)}6+12+10] and offers detailed structural parameters related to the supramolecular binding of BeF42– in these nanojars. The extraction of BeF42– from water into organic solvents, including the highly hydrophobic solvent n-heptane, demonstrates that nanojars are efficient binding and extracting agents not only for oxoanions but also for fluoroanions.  more » « less
Award ID(s):
1808554
NSF-PAR ID:
10330168
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Inorganic Chemistry
ISSN:
0020-1669
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. An extensive single-crystal X-ray crystallographic study of 11 nanojar structures (of which seven are novel) of the formula [anion⊂{cis-CuII(μ-OH)(μ-pz)}n]2– (anion = BeF42–, n = 28, 31, 32, CunBeF4; anion = SO42–, n = 28, 31, CunSO4; pz = pyrazolate, C3H3N2–) has been carried out, providing a detailed description of isomorphism and pseudopolymorphism in nanojars. The results point to a remarkable variety in the shape of the constituent [cis-CuII(μ-OH)(μ-pz)]x (Cux; x = 6, 8, 9, 10, 12 and 14) metallamacrocycles, despite only small differences in the coordination environment of the individual Cu2+ centers. The flexibility of the Cux rings and, ultimately, of the nanojar framework allows for the incarceration of different anions with slightly different dimensions in a nanojar of a given size, resulting in the formation of isomorphous structures in the case of CunBeF4 and CunSO4. Selectivity studies monitored by electrospray-ionization mass spectrometry (ESI-MS) and proton nuclear magnetic resonance spectroscopy (1H NMR) reveal that despite the virtually identical H-bonding pattern around the two anions in nanojars of a given size, SO42– is strongly preferred over BeF42–. The origins of this selectivity are discussed, along with the nature of bonding in the two isosteric anions. Lastly, the crystal structure of (Bu4N)3Be2F7(H2O)3 documents the formation of the Be2F73– ion from BeF42–. 
    more » « less
  2. The unprecedented liquid–liquid extraction of the dinegative chromate ion (CrO42–) from neutral aqueous solutions into aliphatic hydrocarbon solvents using nanojars as extraction agents is demonstrated. Transferring chromate from water into an organic solvent is extremely challenging due to its large hydration energy (ΔGh° = −950 kJ/mol) and strong oxidizing ability. Owing to their highly hydrophilic anion binding pockets lined by a multitude of hydrogen bond donor OH groups, neutral nanojars of the formula [cis-CuII(μ-OH)(μ-4-Rpz)]n (n = 27–33; pz = pyrazolate anion; R = H or n-octyl) strongly bind the CrO42– ion and efficiently transfer it from water into n-heptane or C11 – C13 isoalkanes (when R = n-octyl). The extracted chromate can easily be recovered from the organic layer by stripping with an aqueous acid solution. Electrospray ionization mass spectrometric, UV–vis and paramagnetic 1H NMR spectroscopic, X-ray crystallographic, and thermal stability studies in solution and chemical stability studies toward NH3, methanol, and Ba2+ ions are employed to explore the binding of the CrO42– ion by nanojars. Titration of carbonate nanojars [CO3 ⊂ {Cu(OH)(pz)}n]2– with H2CrO4 leads to anion exchange and the formation of chromate nanojars [CrO4 ⊂ {Cu(OH)(pz)}n]2–. Details of chromate binding by H-bonding based on single-crystal structures of (Bu4N)2[CrO4 ⊂ {Cu(OH)(pz)}28], four pseudopolymorphs of (Bu4N)2[CrO4 ⊂ {Cu(OH)(pz)}31], and also the methoxy-substituted derivative (Bu4N)2[CrO4 ⊂ {Cu31(OH)30(OCH3)(pz)31}] are presented. 
    more » « less
  3. Selective binding and transport of highly hydrophilic anions is ubiquitous in nature, as anion binding proteins can differentiate between similar anions with over a million-fold efficiency. While comparable selectivity has occasionally been achieved for certain anions using small, artificial receptors, the selective binding of certain anions, such as sulfate in the presence of carbonate, remains a very challenging task. Nanojars of the formula [anion⊂{Cu(OH)(pz)} n ] 2− (pz = pyrazolate; n = 27–33) are totally selective for either CO 3 2− or SO 4 2− over anions such as NO 3 − , ClO 4 − , BF 4 − , Cl − , Br − and I − , but cannot differentiate between the two. We hypothesized that rigidification of the nanojar outer shell by tethering pairs of pyrazole moieties together will restrict the possible orientations of the OH hydrogen-bond donor groups in the anion-binding cavity of nanojars, similarly to anion-binding proteins, and will lead to selectivity. Indeed, by using either homoleptic or heteroleptic nanojars of the general formula [anion⊂Cu n (OH) n (L2–L6) y (pz) n −2 y ] 2− ( n = 26–31) based on a series of homologous ligands HpzCH 2 (CH 2 ) x CH 2 pzH ( x = 0–4; H 2 L2–H 2 L6), selectivity for carbonate (with L2 and with L4–L6/pz mixtures) or for sulfate (with L3) has been achieved. The synthesis of new ligands H 2 L3, H 2 L4 and H 2 L5, X-ray crystal structures of H 2 L4 and the tetrahydropyranyl-protected derivatives (THP) 2 L4 and (THP) 2 L5, synthesis and characterization by electrospray-ionization mass spectrometry (ESI-MS) of carbonate- and sulfate-nanojars derived from ligands H 2 L2–H 2 L6, as well as detailed selectivity studies for CO 3 2− vs. SO 4 2− using these novel nanojars are presented. 
    more » « less
  4. null (Ed.)
    Anion binding and extraction from solutions is currently a dynamic research topic in the field of supramolecular chemistry. A particularly challenging task is the extraction of anions with large hydration energies, such as the carbonate ion. Carbonate-binding complexes are also receiving increased interest due to their relevance to atmospheric CO2 fixation. Nanojars are a class of self-assembled, supramolecular coordination complexes that have been shown to bind highly hydrophilic anions and to extract even the most hydrophilic ones, including carbonate, from water into aliphatic solvents. Here we present an expanded nanojar that is able to bind two carbonate ions, thus doubling the previously reported carbonate-binding capacity of nanojars. The new nanojar is characterized by detailed single-crystal X-ray crystallographic studies in the solid state and electrospray ionization mass spectrometric (including tandem MS/MS) studies in solution. 
    more » « less
  5. null (Ed.)
    Although unsaturated organotrifluoroborates are common synthons in metal–organic chemistry, their transition metal complexes have received little attention. [CH 2 (3,5-(CH 3 ) 2 Pz) 2 ]Cu(CH 2 CHBF 3 ), (SIPr)Cu(MeCN)(CH 2 CHBF 3 ) and [CH 2 (3,5-(CH 3 ) 2 Pz) 2 ]Ag(CH 2 CHBF 3 ) represent rare, isolable molecules featuring a vinyltrifluoroborate ligand on coinage metals. The X-ray crystal structures show the presence of three-coordinate metal sites in these complexes. The vinyltrifluoroborate group binds asymmetrically to the metal site in [CH 2 (3,5-(CH 3 ) 2 Pz) 2 ]M(CH 2 CHBF 3 ) (M = Cu, Ag) with relatively closer M–C(H) 2 distances. The computed structures of [CH 2 (3,5-(CH 3 ) 2 Pz) 2 ]M(CH 2 CHBF 3 ) and M(CH 2 CHBF 3 ), however, have shorter M–C(H)BF 3 distances than M–C(H) 2 . These molecules feature various inter- or intra-molecular contacts involving fluorine of the BF 3 group, possibly affecting these M–C distances. The binding energies of [CH 2 CHBF 3 ] − to Cu + , Ag + and Au + have been calculated at the wB97XD/def2-TZVP level of theory, in the presence and absence of the supporting ligand CH 2 (3,5-(CH 3 ) 2 Pz) 2 . The calculation shows that Au + has the strongest binding to the [CH 2 CHBF 3 ] − ligand, followed by Cu + and Ag + , irrespective of the presence of the supporting ligand. However, in all three metals, the supporting ligand weakens the binding of olefin to the metal. The same trends were also found from the analysis of the σ-donation and π-backbonding interactions between the metal fragment and the π and π* orbitals of [CH 2 CHBF 3 ] − . 
    more » « less