skip to main content

Title: Fabrication of Q-Carbon Nanostructures, Diamond and Their Composites with Wafer-Scale Integration
We report the formation of Q-carbon nanolayers, Q-carbon nanoballs, nanodiamonds, microdiamonds, and their composites by controlling laser and substrate variables. The choice of these parameters is guided by the SLIM (simulation of laser interactions with materials) computer modeling. For a constant film thickness and initial sp3 content, we obtain different microstructures with increasing pulse energy density as a result of different quenching rate and undercooling. This is related to decreasing undercooling with increasing pulse energy density. The structure of thin film Q-carbon evolves into Q-carbon nanoballs with the increase in laser annealing energy density. These Q-carbon nanoballs interestingly self-organize in the form of rings with embedded nanodiamonds to form Q-carbon nanoballs/diamond composites. We form high quality, epitaxial nano, and micro diamond films at a higher energy density and discuss a model showing undercooling and quenching rate generating a pressure pulse, which may play a critical role in a direct conversion of amorphous carbon into Q-carbon or diamond or their composites. This ability to selectively tune between diamond or Q-carbon or their composites on a single substrate is highly desirable for a variety of applications ranging from protective coatings to nanosensing and field emission to targeted drug delivery. Furthermore, Q-carbon nanoballs and nanodiamonds are utilized as seeds to grow microdiamond films by HFCVD. It is observed that the Q-carbon nanoballs contain diamond nuclei of critical size, which provide available nucleation sites for diamond growth, leading to stress-free, adherent, and denser films, which are needed for a variety of coating applications.  more » « less
Award ID(s):
Author(s) / Creator(s):
Date Published:
Journal Name:
Page Range / eLocation ID:
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We provide insights pertaining the dependence of undercooling in the formation of graphite, nanodiamonds, and Q-carbon nanocomposites by nanosecond laser melting of diamond-like carbon (DLC). The DLC films are melted rapidly in a super-undercooled state and subsequently quenched to room temperature. Substrates exhibiting different thermal properties—silicon and sapphire, are used to demonstrate that substrates with lower thermal conductivity trap heat flow, inducing larger undercooling, both experimentally and theoretically via finite element simulations. The increased undercooling facilitates the formation of Q-carbon. The Q-carbon is used as nucleation seeds for diamond growth via laser remelting and hot-filament chemical vapor deposition. 
    more » « less
  2. We report a pulsed laser annealing method to convert carbon fibers and nanotubes into diamond fibers at ambient temperature and pressure in air. The conversion of carbon nanofibers and nanotubes into diamond nanofibers involves melting in a super undercooled state using nanosecond laser pulses, and quenching rapidly to convert into phase-pure diamond. The conversion process occurs at ambient temperature and pressure, and can be carried out in air. The structure of diamond fibers has been confirmed by selected-area electron diffraction in transmission electron microscopy, electron-back-scatter-diffraction in high-resolution scanning electron microscopy, all showing characteristic diffraction lines for the diamond structure. The bonding characteristics were determined by Raman spectroscopy with a strong peak near 1332 cm −1 , and high-resolution electron-energy-loss spectroscopy in transmission electron microscopy with a characteristic peak at 292 eV for σ* for sp 3 bonding and the absence of π* for sp 2 bonding. The Raman peak at 1332 cm −1 downshifts to 1321 cm −1 for diamond nanofibers due to the phonon confinement in nanodiamonds. These laser-treated carbon fibers with diamond seeds are used to grow larger diamond crystallites further by using standard hot-filament chemical vapor deposition (HFCVD). We compare these results with those obtained without laser treating the carbon fibers. The details of diamond conversion and HFCVD growth are presented in this paper. 
    more » « less
  3. Abstract

    Quantifying how grain size and/or deviatoric stress impact (Mg,Fe)2SiO4phase stability is critical for advancing our understanding of subduction processes and deep-focus earthquakes. Here, we demonstrate that well-resolved X-ray diffraction patterns can be obtained on nano-grained thin films within laser-heated diamond anvil cells (DACs) at hydrostatic pressures up to 24 GPa and temperatures up to 2300 K. Combined with well-established literature processes for tuning thin film grain size, biaxial stress, and substrate identity, these results suggest that DAC-loaded thin films can be useful for determining how grain size, deviatoric stress, and/or the coexistence of other phases influence high-pressure phase stability. As such, this novel DAC-loaded thin film approach may find use in a variety of earth science, planetary science, solid-state physics, and materials science applications.

    more » « less
  4. Abstract

    A multistep deposition technique is developed to produce highly oriented diamond films by hot filament chemical vapor deposition (HFCVD) on Si (111) substrates. The orientation is produced by use of a thin, 5–20 nm, Ni interlayer. Annealing studies demonstrate diffusion of Ni into Si to form nickel silicides with crystal structure depending on temperature. The HFCVD diamond film with Ni interlayer results in reduced non-diamond carbon, low surface roughness, high diamond crystal quality, and increased texturing relative to growth on bare silicon wafers. X-ray diffraction results show that the diamond film grown with 10 nm Ni interlayer yielded 92.5% of the diamond grains oriented along the (110) crystal planes with ~ 2.5 µm thickness and large average grain size ~ 1.45 µm based on scanning electron microscopy. Texture is also observed to develop for ~ 300 nm thick diamond films with ~ 89.0% of the grains oriented along the (110) crystal plane direction. These results are significantly better than diamond grown on Si (111) without Ni layer with the same HFCVD conditions. The oriented growth of diamond film on Ni interlayers is explained by a proposed model wherein the nano-diamond seeds becoming oriented relative to the β1-Ni3Si that forms during the diamond nucleation period. The model also explains the silicidation and diamond growth processes.

    Article Highlights

    High quality diamond film with minimum surface roughness and ~93% oriented grains along (110) crystallographic direction is grown on Si substrate using a thin 5 to 20 nm nickel layer.

    A detailed report on the formation of different phases of nickel silicide, its stability with different temperature, and its role for diamond film texturing at HFCVD growth condition is presented.

    A diamond growth model on Si substrate with Ni interlayer to grow high quality-oriented diamond film is established.

    more » « less
  5. Abstract

    This work provides the details of a simple and reliable method with less damage to prepare electron transparent samples for in situ studies in scanning/transmission electron microscopy. In this study, we use epitaxial VO2thin films grown on c‐Al2O3by pulsed laser deposition, which have a monoclinic–rutile transition at ~68°C. We employ an approach combining conventional mechanical wedge‐polishing and Focused Ion beam to prepare the electron transparent samples of epitaxial VO2thin films. The samples are first mechanically wedge‐polished and ion‐milled to be electron transparent. Subsequently, the thin region of VO2films are separated from the rest of the polished sample using a focused ion beam and transferred to the in situ electron microscopy test stage. As a critical step, carbon nanotubes are used as connectors to the manipulator needle for a soft transfer process. This is done to avoid shattering of the brittle substrate film on the in situ sample support stage during the transfer process. We finally present the atomically resolved structural transition in VO2films using this technique. This approach significantly increases the success rate of high‐quality sample preparation with less damage for in situ studies of thin films and reduces the cost and instrumental/user errors associated with other techniques.

    The present work highlights a novel, simple, reliable approach with reduced damage to make electron transparent samples for atomic‐scale insights of temperature‐dependent transitions in epitaxial thin film heterostructures using in situ TEM studies.

    more » « less