skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Title: Ternary Nitride Materials: Fundamentals and Emerging Device Applications
Interest in inorganic ternary nitride materials has grown rapidly over the past few decades, as their diverse chemistries and structures make them appealing for a variety of applications. Due to synthetic challenges posed by the stability of N 2 , the number of predicted nitride compounds dwarfs the number that has been synthesized, offering a breadth of opportunity for exploration. This review summarizes the fundamental properties and structural chemistry of ternary nitrides, leveraging metastability and the impact of nitrogen chemical potential. A discussion of prevalent defects, both detrimental and beneficial, is followed by a survey of synthesis techniques and their interplay with metastability. Throughout the review, we highlight applications (such as solid-state lighting, electrochemical energy storage, and electronic devices) in which ternary nitrides show particular promise.  more » « less
Award ID(s):
1653863
PAR ID:
10330283
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Annual Review of Materials Research
Volume:
51
Issue:
1
ISSN:
1531-7331
Page Range / eLocation ID:
591 to 618
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. This review summarizes the recent developments regarding the use of uranium as nuclear fuel, including recycling and health aspects, elucidated from a chemical point of view, i.e., emphasizing the rich uranium coordination chemistry, which has also raised interest in using uranium compounds in synthesis and catalysis. A number of novel uranium coordination features are addressed, such the emerging number of U(II) complexes and uranium nitride complexes as a promising class of materials for more efficient and safer nuclear fuels. The current discussion about uranium triple bonds is addressed by quantum chemical investigations using local vibrational mode force constants as quantitative bond strength descriptors based on vibrational spectroscopy. The local mode analysis of selected uranium nitrides, N≡U≡N, U≡N, N≡U=NH and N≡U=O, could confirm and quantify, for the first time, that these molecules exhibit a UN triple bond as hypothesized in the literature. We hope that this review will inspire the community interested in uranium chemistry and will serve as an incubator for fruitful collaborations between theory and experimentation in exploring the wealth of uranium chemistry. 
    more » « less
  2. null (Ed.)
    Two-phase nanocomposites have gained significant research interest because of their multifunctionalities, tunable geometries and potential device applications. Different from the previously demonstrated oxide–oxide 2-phase nanocomposites, coupling nitrides with metals shows high potential for building alternative hybrid plasmonic metamaterials towards chemical sensing, tunable plasmonics, and nonlinear optics. Unique advantages, including distinct atomic interface, excellent crystalline quality, large-scale surface coverage and durable solid-state platform, address the high demand for new hybrid metamaterial designs for versatile optical material needs. This review summarizes the recent progress on nitride–metal nanocomposites, specifically targeting bottom-up self-assembled nanocomposite thin films. Various morphologies including vertically aligned nanocomposites (VANs), self-organized nanoinclusions, and nanoholes fabricated by additional chemical treatments are introduced. Starting from thin film nucleation and growth, the prerequisites of successful strain coupling and the underlying growth mechanisms are discussed. These findings facilitate a better control of tunable nanostructures and optical functionalities. Future research directions are proposed, including morphological control of the secondary phase to enhance its homogeneity, coupling nitrides with magnetic phase for the magneto-optical effect and growing all-ceramic nanocomposites to extend functionalities and anisotropy. 
    more » « less
  3. Abstract

    Ultrathin and 2D magnetic materials have attracted a great deal of attention recently due to their potential applications in spintronics. Only a handful of stable ultrathin magnetic materials have been reported, but their high‐yield synthesis remains a challenge. Transition metal (e.g., manganese) nitrides are attractive candidates for spintronics due to their predicted high magnetic transition temperatures. Here, a lattice matching synthesis of ultrathin Mn3N2is employed. Taking advantage of the lattice match between a KCl salt template and Mn3N2, this method yields the first ultrathin magnetic metal nitride via a solution‐based route. Mn3N2flakes show intrinsic magnetic behavior even at 300 K, enabling potential room‐temperature applications. This synthesis procedure offers an approach to the discovery of other ultrathin or 2D metal nitrides.

     
    more » « less
  4. The present work details experimental phase stabilization studies for the disordered, multi-cation A6B2O17 (A = Zr, Hf; B = Nb, Ta) system. We leverage both high-temperature in situ and ex situ X-ray diffraction to assess phase equilibrium and metastability in A6B2O17 ceramics produced via reactive sintering of stoichiometric as-received powders. We observe that the A6B2O17 phase can be stabilized for any stoichiometric combination of Group 4B and 5B transition metal cations (Zr, Nb, Hf, Ta), including ternary and quinary systems. The observed minimum stabilization temperatures for these phases are generally in agreement with prior calculations for each disordered A6B2O17 ternary permutation, offering further support for the inferred cation-disordered structure and suggesting that chemical disorder in this system is thermodynamically preferable. We also note that the quinary (Zr3Hf3)(NbTa)O17 phase exhibits enhanced solubility of refractory cations which is characteristic of other high-entropy oxides. Furthermore, A6B2O17 phases experience kinetic metastability, with the orthorhombic structure remaining stable following anneals at intermediate temperatures. 
    more » « less
  5. MXenes are a rapidly growing class of 2D transition metal carbides and nitrides, finding applications in fields ranging from energy storage to electromagnetic interference shielding and transparent conductive coatings. However, while more than 20 carbide MXenes have already been synthesized, Ti 4 N 3 and Ti 2 N are the only nitride MXenes reported so far. Here by ammoniation of Mo 2 CT x and V 2 CT x MXenes at 600 °C, we report on their transformation to 2D metal nitrides. Carbon atoms in the precursor MXenes are replaced with N atoms, resulting from the decomposition of ammonia molecules. The crystal structures of the resulting Mo 2 N and V 2 N were determined with transmission electron microscopy and X-ray pair distribution function analysis. Our results indicate that Mo 2 N retains the MXene structure and V 2 C transforms to a mixed layered structure of trigonal V 2 N and cubic VN. Temperature-dependent resistivity measurements of the nitrides reveal that they exhibit metallic conductivity, as opposed to semiconductor-like behavior of their parent carbides. As important, room-temperature electrical conductivity values of Mo 2 N and V 2 N are three and one order of magnitude larger than those of the Mo 2 CT x and V 2 CT x precursors, respectively. This study shows how gas treatment synthesis such as ammoniation can transform carbide MXenes into 2D nitrides with higher electrical conductivities and metallic behavior, opening a new avenue in 2D materials synthesis. 
    more » « less