We examined the effect of estimation methods, maximum likelihood (ML), unweighted least squares (ULS), and diagonally weighted least squares (DWLS), on three population SEM (structural equation modeling) fit indices: the root mean square error of approximation (RMSEA), the comparative fit index (CFI), and the standardized root mean square residual (SRMR). We considered different types and levels of misspecification in factor analysis models: misspecified dimensionality, omitting cross-loadings, and ignoring residual correlations. Estimation methods had substantial impacts on the RMSEA and CFI so that different cutoff values need to be employed for different estimators. In contrast, SRMR is robust to the method used to estimate the model parameters. The same criterion can be applied at the population level when using the SRMR to evaluate model fit, regardless of the choice of estimation method.
more »
« less
Large-scale model selection in misspecified generalized linear models
Summary Model selection is crucial both to high-dimensional learning and to inference for contemporary big data applications in pinpointing the best set of covariates among a sequence of candidate interpretable models. Most existing work implicitly assumes that the models are correctly specified or have fixed dimensionality, yet both model misspecification and high dimensionality are prevalent in practice. In this paper, we exploit the framework of model selection principles under the misspecified generalized linear models presented in Lv & Liu (2014), and investigate the asymptotic expansion of the posterior model probability in the setting of high-dimensional misspecified models. With a natural choice of prior probabilities that encourages interpretability and incorporates the Kullback–Leibler divergence, we suggest using the high-dimensional generalized Bayesian information criterion with prior probability for large-scale model selection with misspecification. Our new information criterion characterizes the impacts of both model misspecification and high dimensionality on model selection. We further establish the consistency of covariance contrast matrix estimation and the model selection consistency of the new information criterion in ultrahigh dimensions under some mild regularity conditions. Our numerical studies demonstrate that the proposed method enjoys improved model selection consistency over its main competitors.
more »
« less
- Award ID(s):
- 1953356
- PAR ID:
- 10330437
- Date Published:
- Journal Name:
- Biometrika
- Volume:
- 109
- Issue:
- 1
- ISSN:
- 0006-3444
- Page Range / eLocation ID:
- 123 to 136
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract We propose a Bayesian model selection approach for generalized linear mixed models (GLMMs). We consider covariance structures for the random effects that are widely used in areas such as longitudinal studies, genome-wide association studies, and spatial statistics. Since the random effects cannot be integrated out of GLMMs analytically, we approximate the integrated likelihood function using a pseudo-likelihood approach. Our Bayesian approach assumes a flat prior for the fixed effects and includes both approximate reference prior and half-Cauchy prior choices for the variances of random effects. Since the flat prior on the fixed effects is improper, we develop a fractional Bayes factor approach to obtain posterior probabilities of the several competing models. Simulation studies with Poisson GLMMs with spatial random effects and overdispersion random effects show that our approach performs favorably when compared to widely used competing Bayesian methods including deviance information criterion and Watanabe–Akaike information criterion. We illustrate the usefulness and flexibility of our approach with three case studies including a Poisson longitudinal model, a Poisson spatial model, and a logistic mixed model. Our proposed approach is implemented in the R package GLMMselect that is available on CRAN.more » « less
-
Abstract This article considers Bayesian model selection via mean-field (MF) variational approximation. Towards this goal, we study the non-asymptotic properties of MF inference that allows latent variables and model misspecification. Concretely, we show a Bernstein–von Mises (BvM) theorem for the variational distribution from MF under possible model misspecification, which implies the distributional convergence of MF variational approximation to a normal distribution centring at the maximal likelihood estimator. Motivated by the BvM theorem, we propose a model selection criterion using the evidence lower bound (ELBO), and demonstrate that the model selected by ELBO tends to asymptotically agree with the one selected by the commonly used Bayesian information criterion (BIC) as the sample size tends to infinity. Compared to BIC, ELBO tends to incur smaller approximation error to the log-marginal likelihood (a.k.a. model evidence) due to a better dimension dependence and full incorporation of the prior information. Moreover, we show the geometric convergence of the coordinate ascent variational inference algorithm, which provides a practical guidance on how many iterations one typically needs to run when approximating the ELBO. These findings demonstrate that variational inference is capable of providing a computationally efficient alternative to conventional approaches in tasks beyond obtaining point estimates.more » « less
-
We propose an empirical Bayes formulation of the structure learning problem, where the prior specification assumes that all node variables have the same error variance, an assumption known to ensure the identifiability of the underlying causal directed acyclic graph. To facilitate efficient posterior computation, we approximate the posterior probability of each ordering by that of a best directed acyclic graph model, which naturally leads to an order-based Markov chain Monte Carlo algorithm. Strong selection consistency for our model in high-dimensional settings is proved under a condition that allows heterogeneous error variances, and the mixing behaviour of our sampler is theoretically investigated. Furthermore, we propose a new iterative top-down algorithm, which quickly yields an approximate solution to the structure learning problem and can be used to initialize the Markov chain Monte Carlo sampler. We demonstrate that our method outperforms other state-of-the-art algorithms under various simulation settings, and conclude the paper with a single-cell real-data study illustrating practical advantages of the proposed method.more » « less
-
The statistical practice of modeling interaction with two linear main effects and a product term is ubiquitous in the statistical and epidemiological literature. Most data modelers are aware that the misspecification of main effects can potentially cause severe type I error inflation in tests for interactions, leading to spurious detection of interactions. However, modeling practice has not changed. In this article, we focus on the specific situation where the main effects in the model are misspecified as linear terms and characterize its impact on common tests for statistical interaction. We then propose some simple alternatives that fix the issue of potential type I error inflation in testing interaction due to main effect misspecification. We show that when using the sandwich variance estimator for a linear regression model with a quantitative outcome and two independent factors, both the Wald and score tests asymptotically maintain the correct type I error rate. However, if the independence assumption does not hold or the outcome is binary, using the sandwich estimator does not fix the problem. We further demonstrate that flexibly modeling the main effect under a generalized additive model can largely reduce or often remove bias in the estimates and maintain the correct type I error rate for both quantitative and binary outcomes regardless of the independence assumption. We show, under the independence assumption and for a continuous outcome, overfitting and flexibly modeling the main effects does not lead to power loss asymptotically relative to a correctly specified main effect model. Our simulation study further demonstrates the empirical fact that using flexible models for the main effects does not result in a significant loss of power for testing interaction in general. Our results provide an improved understanding of the strengths and limitations for tests of interaction in the presence of main effect misspecification. Using data from a large biobank study “The Michigan Genomics Initiative”, we present two examples of interaction analysis in support of our results.more » « less
An official website of the United States government

