skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Aggregate Trends of Apolipoprotein E on Cognition in Transgenic Alzheimer’s Disease Mice
Background: Apolipoprotein E (APOE) genotypes typically increase risk of amyloid-β deposition and onset of clinical Alzheimer’s disease (AD). However, cognitive assessments in APOE transgenic AD mice have resulted in discord. Objective: Analysis of 31 peer-reviewed AD APOE mouse publications (n = 3,045 mice) uncovered aggregate trends between age, APOE genotype, gender, modulatory treatments, and cognition. Methods: T-tests with Bonferroni correction (significance = p < 0.002) compared age-normalized Morris water maze (MWM) escape latencies in wild type (WT), APOE2 knock-in (KI2), APOE3 knock-in (KI3), APOE4 knock-in (KI4), and APOE knock-out (KO) mice. Positive treatments (t+) to favorably modulate APOE to improve cognition, negative treatments (t–) to perturb etiology and diminish cognition, and untreated (t0) mice were compared. Machine learning with random forest modeling predicted MWM escape latency performance based on 12 features: mouse genotype (WT, KI2, KI3, KI4, KO), modulatory treatment (t+, t–, t0), mouse age, and mouse gender (male = g_m; female = g_f, mixed gender = g_mi). Results: KI3 mice performed significantly better in MWM, but KI4 and KO performed significantly worse than WT. KI2 performed similarly to WT. KI4 performed significantly worse compared to every other genotype. Positive treatments significantly improved cognition in WT, KI4, and KO compared to untreated. Interestingly, negative treatments in KI4 also significantly improved mean MWM escape latency. Random forest modeling resulted in the following feature importance for predicting superior MWM performance: [KI3, age, g_m, KI4, t0, t+, KO, WT, g_mi, t–, g_f, KI2] = [0.270, 0.094, 0.092, 0.088, 0.077, 0.074, 0.069, 0.061, 0.058, 0.054, 0.038, 0.023]. Conclusion: APOE3, age, and male gender was most important for predicting superior mouse cognitive performance.  more » « less
Award ID(s):
1944247
PAR ID:
10330445
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Alzheimer's Disease
Volume:
83
Issue:
1
ISSN:
1387-2877
Page Range / eLocation ID:
435 to 450
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Background: Amyloid-β plaques (Aβ) are associated with Alzheimer’s disease (AD). Pooled assessment of amyloid reduction in transgenic AD mice is critical for expediting anti-amyloid AD therapeutic research. Objective: The mean threshold of Aβ reduction necessary to achieve cognitive improvement was measured via pooled assessment (n = 594 mice) of Morris water maze (MWM) escape latency of transgenic AD mice treated with substances intended to reduce Aβ via reduction of beta-secretase cleaving enzyme (BACE). Methods: Machine learning and statistical methods identified necessary amyloid reduction levels using mouse data (e.g., APP/PS1, LPS, Tg2576, 3xTg-AD, control, wild type, treated, untreated) curated from 22 published studies. Results: K-means clustering identified 4 clusters that primarily corresponded with level of Aβ: untreated transgenic AD control mice, wild type mice, and two clusters of transgenic AD mice treated with BACE inhibitors that had either an average 25% “medium reduction” of Aβ or 50% “high reduction” of Aβ compared to untreated control. A 25% Aβ reduction achieved a 28% cognitive improvement, and a 50% Aβ reduction resulted in a significant 32% improvement compared to untreated transgenic mice (p < 0.05). Comparatively, wild type mice had a mean 41% MWM latency improvement over untreated transgenic mice (p < 0.05). BACE reduction had a lesser impact on the ratio of Aβ42 to Aβ40. Supervised learning with an 80% –20% train-test split confirmed Aβ reduction was a key feature for predicting MWM escape latency (R2 = 0.8 to 0.95). Conclusions: Results suggest a 25% reduction in Aβ as a meaningful treatment threshold for improving transgenic AD mouse cognition. 
    more » « less
  2. Adult mammalian kidney is derived from the metanephros (nephrons) and mesonephros (collecting system). Several transcription factors such as PAX2, PAX8, CK7, and WT1 are known to regulate the development of kidneys. Mutations in an oncogenic protein p63, a cause of Ectrodactyly-ectodermal dysplasia-clefting syndrome 3, has been shown to cause genitourinary anomalies. However, Gbx2, a transcription factor involved in brain and cardiovascular system maturation has not been studied in context with kidney development. In this study, we compared the expression of markers of specific nephron segments in kidneys from 18-day embryonic age (E18.5) of p63 knock out (KO) and Gbx2 neo/neo (with 6-10% of WT expression) mice. Kidneys from p63 KO or Gbx2 neo/neo mice at E18.5 were embedded in paraffin and sections (5 mm) were studied at a light microscope after staining with Hematoxylin Eosin (HE) and immunohistochemistry. Antibody staining was performed against HNFa (proximal tubule), NKCC2 (loop of Henle), NCC (distal tubule), and Aqp2 (CCT) and Na-K ATPase. HE staining showed excessive red blood cell infiltration in the kidneys of Gbx2 neo/neo mice as compared to the kidneys of p63 KO mice. However, the glomerular and tubular structures were similar in both groups. Expression of markers of all nephron segments was significantly less in kidneys from Gbx2 neo/neo mice as compared to kidneys from p63 KO mice. The expression of Na-K ATPase was similar in kidneys from both mouse groups. Based on our observations, we conclude that Gbx2 may play an important role in kidney development. Gbx2 is not expressed in the kidneys, but its expression is essential for vascular development. Therefore, Gbx2 may play an important role in regulating kidney development through the control of vascular development. Further studies are required to confirm the role of Gbx2 in kidney development. This study provides evidence of an unknown function of Gbx2 and may help us in understanding the mechanisms of kidney development. R25AG047843 This abstract was presented at the American Physiology Summit 2025 and is only available in HTML format. There is no downloadable file or PDF version. The Physiology editorial board was not involved in the peer review process. 
    more » « less
  3. Introduction Alzheimer's disease (AD) is a progressive neurodegenerative disease. The early processes of AD, however, are not fully understood and likely begin years before symptoms manifest. Importantly, disruption of the default mode network, including the hippocampus, has been implicated in AD. Methods To examine the role of functional network connectivity changes in the early stages of AD, we performed resting-state functional magnetic resonance imaging (rs-fMRI) using a mouse model harboring three familial AD mutations ( App NL-G-F/NL-G-F knock-in, APPKI) in female mice in early, middle, and late age groups. The interhemispheric and intrahemispheric functional connectivity (FC) of the hippocampus was modeled across age. Results We observed higher interhemispheric functional connectivity (FC) in the hippocampus across age. This was reduced, however, in APPKI mice in later age. Further, we observed loss of hemispheric asymmetry in FC in APPKI mice. Discussion Together, this suggests that there are early changes in hippocampal FC prior to heavy onset of amyloid β plaques, and which may be clinically relevant as an early biomarker of AD. 
    more » « less
  4. Surfactant protein D (SP-D) is a C-type collectin and plays an important role in innate immunity and homeostasis in the lung. This study studied SP-D role in the nontypeable Haemophilus influenzae (NTHi)-induced otitis media (OM) mouse model. Wild-type C57BL/6 (WT) and SP-D knockout (KO) mice were used in this study. Mice were injected in the middle ear (ME) with 5 μL of NTHi bacterial solution (3.5 × 105 CFU/ear) or with the same volume of sterile saline (control). Mice were sacrificed at 3 time points, days 1, 3, and 7, after treatment. We found SP-D expression in the Eustachian tube (ET) and ME mucosa of WT mice but not in SP-D KO mice. After infection, SP-D KO mice showed more intense inflammatory changes evidenced by the increased mucosal thickness and inflammatory cell infiltration in the ME and ET compared to WT mice (p < 0.05). Increased bacterial colony-forming units and cytokine (IL-6 and IL-1β) levels in the ear washing fluid of infected SP-D KO mice were compared to infected WT mice. Molecular analysis revealed higher levels of NF-κB and NLRP3 activation in infected SP-D KO compared to WT mice (p < 0.05). In vitro studies demonstrated that SP-D significantly induced NTHi bacterial aggregation and enhanced bacterial phagocytosis by macrophages (p < 0.05). Furthermore, human ME epithelial cells showed a dose-dependent increased expression of NLRP3 and SP-D proteins after LPS treatment. We conclude that SP-D plays a critical role in innate immunity and disease resolution through enhancing host defense and regulating inflammatory NF-κB and NLRP3 activation in experimental OM mice. 
    more » « less
  5. Alzheimer’s disease (AD) is the most common form of dementia and results in neurodegeneration and cognitive impairment. White matter (WM) is affected in AD and has implications for neural circuitry and cognitive function. The trajectory of these changes across age, however, is still not well understood, especially at earlier stages in life. To address this, we used theAppNL-G-F/NL-G-Fknock-in (APPKI) mouse model that harbors a single copy knock-in of the human amyloid precursor protein (APP) gene with three familial AD mutations. We performedin vivodiffusion tensor imaging (DTI) to study how the structural properties of the brain change across age in the context of AD. In late age APPKI mice, we observed reduced fractional anisotropy (FA), a proxy of WM integrity, in multiple brain regions, including the hippocampus, anterior commissure (AC), neocortex, and hypothalamus. At the cellular level, we observed greater numbers of oligodendrocytes in middle age (prior to observations in DTI) in both the AC, a major interhemispheric WM tract, and the hippocampus, which is involved in memory and heavily affected in AD, prior to observations in DTI. Proteomics analysis of the hippocampus also revealed altered expression of oligodendrocyte-related proteins with age and in APPKI mice. Together, these results help to improve our understanding of the development of AD pathology with age, and imply that middle age may be an important temporal window for potential therapeutic intervention. 
    more » « less