skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Modeling of the Effects of Pleat Packing Density and Cartridge Geometry on the Performance of Pleated Membrane Filters
Pleated membrane filters are widely used to remove undesired impurities from a fluid in many applications. A filter membrane is sandwiched between porous support layers and then pleated and packed into an annular cylindrical cartridge with a central hollow duct for outflow. Although this arrangement offers a high surface filtration area to volume ratio, the filter performance is not as efficient as those of equivalent flat filters. In this paper, we use asymptotic methods to simplify the flow throughout the cartridge to systematically investigate how the number of pleats or pleat packing density affects the performance of the pleated membrane filters. The model is used to determine an optimal number of pleats in order to achieve a particular optimum filtration performance. Our findings show that only the “just right”—neither too few nor too many—number of pleats gives optimum performance in a pleated filter cartridge.  more » « less
Award ID(s):
2108161
PAR ID:
10330500
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Fluids
Volume:
6
Issue:
6
ISSN:
2311-5521
Page Range / eLocation ID:
209
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. A pleated membrane filter consists of a porous membrane layer, which is surrounded by two supporting layers, and the whole structure is pleated and placed into a cylindrical cartridge. Pleated membrane filters are used in a variety of industrial applications, since they offer more surface area to volume ratio that is not found in equivalent flat filters. In this work, we introduce a novel three-dimensional model of a pleated membrane filter that consists of an empty region, a pleated region, and a hollow region. The advection diffusion equation is used to model contaminant concentration in the membrane pores along with Darcy's law to model the flow within the membrane and support layers, while the Stokes equation is used for the flow in the empty region and the hollow region. We further use the key assumptions of our model based on small aspect ratios of the filter cartridge and the pleated membrane to simplify the governing equations, which can be easily solved by numerical methods. By performing these steps, we seek to discover an optimal pleat packing density to find the optimum filter performance, while not exceeding a threshold for the particle concentration at the filter outlet. 
    more » « less
  2. null (Ed.)
    Membrane filtration fouling is a very complex process and is determined by many properties such as the membrane internal morphology, membrane pore structure, flow rate and contaminant properties. In a very slow filtration process or during the late stage of filtration, when the flow rate is naturally low and Péclet number is small, particle diffusion is essential and cannot be neglected, while in typical filtration models, especially in moderate and fast filtration process, the main contribution stems from the particle advection. The objectives of this study is to formulate mathematical models that can (i) investigate how filtration process varies under possible effects of particles diffusion; and (ii) describe how membrane morphology evolves and investigate the filtration performance during the filtration process. We also compare the results with the case that diffusion is less important and make a prediction about what kind of membrane filter pore structure should be employed to achieve a particular optimum filtration performance. According to our results, the filtrate and efficiency of particle separation are found to be under the trade-off relationship, and the selection of the membrane properties depends on the requirement of the filtration. 
    more » « less
  3. null (Ed.)
    We study the influence of a membrane filter's internal pore structure on its flow and adsorptive fouling behaviour. Membrane performance is measured via (1) comparison between volumetric flow rate and throughput during filtration and (2) control of concentration of foulants at membrane pore outlets. Taking both measures into account, we address the merits and drawbacks of selected membrane pore structures. We first model layered planar membrane structures with intra-layer pore connections, and present comparisons between non-connected and connected structures. Our model predicts that membrane filters with connected pore structures lead to higher total volumetric throughput than those with non-connected structures, over the filter lifetime. We also provide a sufficient criterion for the concentration of particles escaping the filter to achieve a maximum in time (indicative of a membrane filter whose particle retention capability can deteriorate). Additionally, we find that the influence of intra-layer heterogeneity in pore-size distribution on filter performance depends on the connectivity properties of the pores. 
    more » « less
  4. The performance of virus filters is often determined by the extent of protein fouling, which can affect both filtrate flux and virus retention. However, the mechanisms governing changes in virus retention in the presence of proteins are still not well understood. The objective of this work was to examine the effect of proteins on virus retention by both asymmetric (Viresolve® NFP and Viresolve® Pro) and relatively homogeneous (Ultipor® DV20 and PegasusTM SV4) virus filtration membranes. Experiments were performed with bacteriophage ϕX174 as a model parvovirus and human serum immunoglobulin G (hIgG) as a model protein. The virus retention in 1 g/L hIgG solutions was consistently less than that in a protein-free buffer solution by between 1 to 3 logs for the different virus filters. The virus retention profiles for the two homogeneous membranes were very similar, with the virus retention being highly correlated with the extent of flux decline. Membranes prefouled with hIgG and then challenged with phages also showed much lower virus retention, demonstrating the importance of membrane fouling; the one exception was the Viresolve® Pro membrane, which showed a similar virus retention for the prefouled and pristine membranes. Experiments in which the protein was filtered after the virus challenge demonstrated that hIgG can displace previously captured viruses from within a filter. The magnitude of these effects significantly varied for the different virus filters, likely due to differences in membrane morphology, pore size distribution, and chemistry, providing important insights into the development/application of virus filtration in bioprocessing. 
    more » « less
  5. Abstract Tangential flow filtration (TFF) has many advantages for bioreactor harvesting, as the permeate could be introduced directly to the subsequent capture step. However, membrane fouling has limited its widespread use. This is particularly problematic given the high cell densities encountered today. Here, a reverse asymmetric membrane, where the more open surface faces the feed stream and the tighter barrier layer faces the permeate stream, has been investigated. The open surface contains pores up to 40 μm in diameter while the tighter barrier layer has an average pore size of 0.4 μm. Filtration of yeast suspensions has been conducted under a range of conditions. The yeast cells are trapped in the open pore structure. The membrane stabilizes an internal porous cake that acts like a depth filter. This stabilized cake layer can remove particulate matter that would foul the barrier layer if it faced the feed stream. As filtration continues, a surface cake layer forms on the membrane surface. A resistance in series model has been developed to describe the permeate flux during TFF. The model contains three fitted parameters which can easily be determined from constant pressure normal flow filtration experiments and total recycle constant flux TFF experiments. The model can be used to estimate the capacity of the filter for a given feed stream. Our results suggest that using a reverse asymmetric membrane could avoid severe flux decline associated with fouling of the barrier layer during bioreactor harvesting. 
    more » « less