skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: In-stream wetland deposits, megadroughts, and cultural change in the northern Atacama Desert, Chile
Abstract A key concern regarding current and future climate change is the possibility of sustained droughts that can have profound impacts on societies. As such, multiple paleoclimatic proxies are needed to identify megadroughts, the synoptic climatology responsible for these droughts, and their impacts on past and future societies. In the hyperarid Atacama Desert of northern Chile, many streams are characterized by perennial flow and support dense in-stream wetlands. These streams possess sequences of wetland deposits as fluvial terraces that record past changes in the water table. We mapped and radiocarbon dated a well-preserved sequence of in-stream wetland deposits along a 4.3-km reach of the Río San Salvador in the Calama basin to determine the relationship between regional climate change and the incision of in-stream wetlands. The Río San Salvador supported dense wetlands from 11.1 to 9.8, 6.4 to 3.5, 2.8 to 1.3, and 1.0 to 0.5 ka and incised at the end of each of these intervals. Comparison with other in-stream wetland sequences in the Atacama Desert, and with regional paleoclimatic archives, indicates that in-stream wetlands responded similarly to climatic changes by incising during periods of extended drought at ~9.8, 3.5, 1.3, and 0.5 ka.  more » « less
Award ID(s):
1855381
PAR ID:
10330510
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
Quaternary Research
Volume:
91
Issue:
1
ISSN:
0033-5894
Page Range / eLocation ID:
63 to 80
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The primary objective of this project is to understand how long-term climate variability and change influence the structure and function of desert streams via effects on hydrologic disturbance regimes. Climate and hydrology are intimately linked in arid landscapes; for this reason, desert streams are particularly well suited for both observing and understanding the consequences of climate variability and directional change. Researchers try to (1) determine how climate variability and change over multiple years influence stream biogeomorphic structure (i.e., prevalence and persistence of wetland and gravel-bed ecosystem states) via their influence on factors that control vegetation biomass, and (2) compare interannual variability in within-year successional patterns in ecosystem processes and community structure of primary producers and consumers of two contrasting reach types (wetland and gravel-bed stream reaches). This specific dataset was collected to monitor long-term changes in dissolved nutrient concentrations (N, P, C) by sampling surface water within gravel and wetland dominated reaches during baseflow. 
    more » « less
  2. Abstract. Methane emissions from boreal and arctic wetlands, lakes, and rivers areexpected to increase in response to warming and associated permafrost thaw.However, the lack of appropriate land cover datasets for scalingfield-measured methane emissions to circumpolar scales has contributed to alarge uncertainty for our understanding of present-day and future methaneemissions. Here we present the Boreal–Arctic Wetland and Lake Dataset(BAWLD), a land cover dataset based on an expert assessment, extrapolatedusing random forest modelling from available spatial datasets of climate,topography, soils, permafrost conditions, vegetation, wetlands, and surfacewater extents and dynamics. In BAWLD, we estimate the fractional coverage offive wetland, seven lake, and three river classes within 0.5 × 0.5∘ grid cells that cover the northern boreal and tundra biomes(17 % of the global land surface). Land cover classes were defined usingcriteria that ensured distinct methane emissions among classes, as indicatedby a co-developed comprehensive dataset of methane flux observations. InBAWLD, wetlands occupied 3.2 × 106 km2 (14 % of domain)with a 95 % confidence interval between 2.8 and 3.8 × 106 km2. Bog, fen, and permafrost bog were the most abundant wetlandclasses, covering ∼ 28 % each of the total wetland area,while the highest-methane-emitting marsh and tundra wetland classes occupied5 % and 12 %, respectively. Lakes, defined to include all lentic open-waterecosystems regardless of size, covered 1.4 × 106 km2(6 % of domain). Low-methane-emitting large lakes (>10 km2) and glacial lakes jointly represented 78 % of the total lakearea, while high-emitting peatland and yedoma lakes covered 18 % and 4 %,respectively. Small (<0.1 km2) glacial, peatland, and yedomalakes combined covered 17 % of the total lake area but contributeddisproportionally to the overall spatial uncertainty in lake area with a95 % confidence interval between 0.15 and 0.38 × 106 km2. Rivers and streams were estimated to cover 0.12  × 106 km2 (0.5 % of domain), of which 8 % was associated withhigh-methane-emitting headwaters that drain organic-rich landscapes.Distinct combinations of spatially co-occurring wetland and lake classeswere identified across the BAWLD domain, allowing for the mapping of“wetscapes” that have characteristic methane emission magnitudes andsensitivities to climate change at regional scales. With BAWLD, we provide adataset which avoids double-accounting of wetland, lake, and river extentsand which includes confidence intervals for each land cover class. As such,BAWLD will be suitable for many hydrological and biogeochemical modellingand upscaling efforts for the northern boreal and arctic region, inparticular those aimed at improving assessments of current and futuremethane emissions. Data are freely available athttps://doi.org/10.18739/A2C824F9X (Olefeldt et al., 2021). 
    more » « less
  3. Maresca, Julia A (Ed.)
    ABSTRACT Sediments in cryoconite holes and meltwater streams in the McMurdo Dry Valleys, Antarctica, provide both substrates and conditions that support life in an arid polar desert. Here, we report the genomic sequences of eight environmental, bacterial isolates from Canada Glacier cryoconite holes and stream. These isolates span three major phyla. 
    more » « less
  4. Singer, B.; Jiang, G. (Ed.)
    The Qaidam Basin marks a crucial boundary between the Westerlies and the Asian summer monsoons. Previous studies in the Qaidam Basin have advanced our knowledge of the paleoclimate over glacial to interglacial cycles. However, our understanding of the paleoclimatic sensitivity of the Qaidam Basin to the relative strength of these two climatic driving forces remains limited due to the lack of regional paleoclimatic reconstructions. The Qaidam Basin is proposed as a regional and global eolian dust source during the glacial periods, during which a cold, dry climate is associated with the equatorward shift of the jet stream. On the contrary, paleoshoreline records suggest that a highstand lake stage prevailed in late Marine Isotope Stage 3 (MIS 3) and lasted until 15 ka. To address this conundrum, we have applied an integrated approach to reconstructing the regional paleoclimatic history by combining compound-specific isotope analysis, lake temperature reconstruction, and numerical modeling. Our results show varying paleoclimate associated with the dynamic climate boundary since 45 ka: (1) a wet climate during late MIS 3, when the Asian summer monsoons are strengthened under high summer insolation and penetrate further into Central Asia; (2) a general cold, dry but wetter than at present climate in the Last Glacial Maximum (LGM), when the Asian summer monsoons retreat and the Westerlies become dominant; and (3) three short periods of extreme aridity corresponding to the Younger Dryas and Heinrich 2 and 4 events, when the normal moisture transport via the Westerlies and Asian summer monsoons is interrupted. The numerical modeling supports an increase in the effective precipitation during the LGM due to reduced evaporation under low summer insolation. These results suggest that the Westerlies and Asian summer monsoons alternately controlled the climate in the Qaidam Basin in response to precessional forcing during the late Pleistocene. 
    more » « less
  5. Abstract Evaluating stream water chemistry patterns provides insight into catchment ecosystem and hydrologic processes. Spatially distributed patterns and controls of stream solutes are well‐established for high‐relief catchments where solute flow paths align with surface topography. However, the controls on solute patterns are poorly constrained for low‐relief catchments where hydrogeologic heterogeneities and river corridor features, like wetlands, may influence water and solute transport. Here, we provide a data set of solute patterns from 58 synoptic surveys across 28 sites and over 32 months in a low‐relief wetland‐rich catchment to determine the major surface and subsurface controls along with wetland influence across the catchment. In this low‐relief catchment, the expected wetland storage, processing, and transport of solutes is only apparent in solute patterns of the smallest subcatchments. Meanwhile, downstream seasonal and wetland influence on observed chemistry can be masked by large groundwater contributions to the main stream channel. These findings highlight the importance of incorporating variable groundwater contributions into catchment‐scale studies for low‐relief catchments, and that understanding the overall influence of wetlands on stream chemistry requires sampling across various spatial and temporal scales. Therefore, in low‐relief wetland‐rich catchments, given the mosaic of above and below ground controls on stream solutes, modeling efforts may need to include both surface and subsurface hydrological data and processes. 
    more » « less