skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Repeated large-scale mechanical treatment of invasive Typha under increasing water levels promotes floating mat formation and wetland methane emissions
Invasive species management typically aims to promote diversity and wildlife habitat, but little is known about how management techniques affect wetland carbon (C) dynamics. Since wetland C uptake is largely influenced by water levels and highly productive plants, the interplay of hydrologic extremes and invasive species is fundamental to understanding and managing these ecosystems. During a period of rapid water level rise in the Laurentian Great Lakes, we tested how mechanical treatment of invasive plant Typha × glauca shifts plant-mediated wetland C metrics. From 2015 to 2017, we implemented large-scale treatment plots (0.36-ha) of harvest (i.e., cut above water surface, removed biomass twice a season), crush (i.e., ran over biomass once mid-season with a tracked vehicle), and Typha-dominated controls. Treated Typha regrew with approximately half as much biomass as unmanipulated controls each year, and Typha production in control stands increased from 500 to 1500 g-dry mass m−2 yr−1 with rising water levels (~10 to 75 cm) across five years. Harvested stands had total in-situ methane (CH4) flux rates twice as high as in controls, and this increase was likely via transport through cut stems because crushing did not change total CH4 flux. In 2018, one year after final treatment implementation, crushed stands had greater surface water diffusive CH4 flux rates than controls (measured using dissolved gas in water), likely due to anaerobic decomposition of flattened biomass. Legacy effects of treatments were evident in 2019; floating Typha mats were present only in harvested and crushed stands, with higher frequency in deeper water and a positive correlation with surface water diffusive CH4 flux. Our study demonstrates that two mechanical treatments have differential effects on Typha structure and consequent wetland CH4 emissions, suggesting that C-based responses and multi-year monitoring in variable water conditions are necessary to accurately assess how management impacts ecological function.  more » « less
Award ID(s):
1659338
PAR ID:
10330564
Author(s) / Creator(s):
; ; ;
Editor(s):
Jan Vymazal
Date Published:
Journal Name:
Science of the total environment
Volume:
790
ISSN:
1879-1026
Page Range / eLocation ID:
147920
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Many coastal forests stretching from central California to southwest Oregon are threatened or have been impacted by the invasive forest pathogen Phytophthora ramorum, cause of sudden oak death. We analyzed a set of stand-level forest treatments aimed at preventing or mitigating disease impacts on stand composition, biomass, and fuels, using a before-after-control-intervention experiment with a revaluation after five years. We compared the effects of restorative management in invaded stands to preventative treatments in uninvaded forests. The restorative treatments contrasted two approaches to mastication, hand-crew thinning, and thinning with pile burning with untreated controls (N=30) while the preventative treatments were limited to hand-crew thinning (N=10). Half of the restoration treatments had basal sprouts removed two- and four-years after treatment. All treatments significantly reduced stand density and increased average tree size without significantly decreasing total basal area both immediately and five years after treatments. Preventative treatments also significantly increased dominance of timber species not susceptible to P. ramorum. Follow-up basal sprout removal in the restoration experiment appears to maintain treatment benefits to average tree size and may be associated with small decreases in stand density five years after initial treatment. Our study demonstrates that for at least five years, a range of common stand management practices can improve forests threatened or impacted by sudden oak death. 
    more » « less
  2. The large carbon (C) stock of wetlands is vulnerable to climate change, especially in high latitudes that are warming at a disproportional rate. Likewise, low-lying Arctic areas will experience increased coastal flooding under climate change and sea-level rise, which may alter goose herbivory and fecal deposition patterns if geese are pushed inland. While temperature, flooding, and feces impact soil C emissions, their interactive effects have been rarely studied. Here, we explore the impact of these interactions on carbon dioxide (CO2) and methane (CH4) emissions and nitrogen (N) mineralization (ammonification) in soils collected from four plant communities in the Yukon-Kuskokwim (Y-K) Delta, a high latitude coastal wetland in western Alaska. Communities included a Grazing Lawn, which is intensely grazed and susceptible to flooding, a Lowland Wetland and an Upland Wetland that experience moderate grazing and frequent (Lowland) and less frequent (Upland) flooding, and a rarely grazed and flooded Tundra community, located at the highest elevation. Soils were incubated for 16 weeks at 8 degrees Celsius (°C) or 18°C in microcosms and subjected to flooding and feces addition treatments with no-flood and no-feces controls. We quantified C emissions weekly and ammonification over the course of the experiment. While warming increased ammonification and C demand in the Lowland Wetland and always increased CO2 and CH4 emissions, interactions with flooding complicated warming impacts on C emissions in the Grazing Lawn and Tundra. In the Grazing Lawn, flooding increased CH4 emissions at 8°C and 18 °C, but in the Tundra, flooding suppressed CH4 emissions at 18°C. Flooding alone reduced CO2 emissions in the Upland Wetland. Feces addition increased CO2 emissions in all communities, but feces impacts on CH4 emissions and ammonification were minimal. When feces and flooding occurred together in the Lowland Wetland, CH4 emissions decreased compared to when feces was added without concomitant flood. Feces decreased the immobilization of ammonium and N demand in the Tundra only. Our results suggest that flooding could partially offset C loss from warming in less frequently flooded, higher elevation communities, but this offset could be negligible if flooding and warming drastically increase C loss in more flooded lowland areas. 
    more » « less
  3. Predicted climate change extremes, such as severe and prolonged drought, may profoundly impact biogeochemical processes like carbon and nitrogen cycling in water-limited ecosystems. To increase our understanding of how extreme climate events impact belowground ecosystem processes, we investigated the effects of five years of severe growing season drought and two-month delay in monsoon precipitation on belowground productivity and biogeochemical processes in two semi-arid grasslands. This experiment takes place during the fifth year of the Extreme Drought in Grassland Experiment (EDGE) at the Sevilleta National Wildlife Refuge (SNWR), a Long-Term Ecological Research in central New Mexico, USA. The two grassland sites a Chihuahuan Desert grassland dominated by Bouteloua eriopoda and Great Plains grassland dominated by B. gracilis are ~5km apart in the SWNR. The EDGE platform was established in the spring of 2012 (pre-treatment). Each site contains three treatments (ten replicates): ambient rainfall, extreme growing season drought, and delayed monsoon. The extreme drought treatment reduces growing season rainfall (April through September) each year by 66%, which equates to a 50% reduction of annual precipitation while maintaining natural precipitation patterns. There are 10 replicates per treatment within each site. All plots are 3 x 4 m in size and are paired spatially into blocks with treatments assigned randomly within a block. We measured an array of belowground and biogeochemical variables. Each variable was measured either once, twice, or three times (specific information on sampling scheme for each measured variable in methods section). Belowground net primary productivity, standing crop root biomass, total organic carbon, and total nitrogen were measured once. Extractable organic carbon, extractable total nitrogen, microbial biomass carbon, microbial biomass nitrogen and extracellular enzymes were measured twice. Available soil nitrate, available soil ammonium, and available soil phosphate were measured three times. 
    more » « less
  4. Abstract Forest fire frequency, extent, and severity have rapidly increased in recent decades across the western United States (US) due to climate change and suppression‐oriented wildfire management. Fuels reduction treatments are an increasingly popular management tool, as evidenced by California's plan to treat 1 million acres annually by 2050. However, the aggregate efficacy of fuels treatments in dry forests at regional and multi‐decadal scales is unknown. We develop a novel fuels treatment module within a coupled dynamic vegetation and fire model to study the effects of dead biomass removal from forests in the Sierra Nevada region of California. We ask how annual treatment extent, stand‐level treatment intensiveness, and spatial treatment placement alter fire severity and live carbon loss. We find that a ∼30% reduction in stand‐replacing fire was achieved under our baseline treatment scenario of 1,000 km2 year−1after a 100‐year treatment period. Prioritizing the most fuel‐heavy stands based on precise fuel distributions yielded cumulative reductions in pyrogenic stand‐replacement of up to 50%. Both removing constraints on treatment location due to remoteness, topography, and management jurisdiction and prioritizing the most fuel‐heavy stands yielded the highest stand‐replacement rate reduction of ∼90%. Even treatments that succeeded in lowering aggregate fire severity often took multiple decades to yield measurable effects, and avoided live carbon loss remained negligible across scenarios. Our results suggest that strategically placed fuels treatments are a promising tool for controlling forest fire severity at regional, multi‐decadal scales, but may be less effective for mitigating live carbon losses. 
    more » « less
  5. This dataset contains vegetative cover data of plots that have had various plant functional groups or species experimentally removed at the Jornada Basin LTER site in southern New Mexico, USA. This data was collected with the objective to distinguish the differential effects of plant community biomass, functional groups, and biodiversity within functional groups on ecosystem and plant community function. To make these distinctions, treatments were established by the selective removal of plant species or functional groups within experimental plots. There are eight treatments: control (C, no removals); four functional group removal treatments (PG, perennial grass removed; S, shrubs removed; SSh, subshrubs removed; Succ, succulents removed), and three species richness manipulation treatments. Richness manipulations included a simplified treatment (Simp), where only the single most abundant species of each growth form is preserved and all other species in the growth form are removed, a reduced‐Larrea treatment (rL), where the Larrea is assumed to be the dominant and is removed while minority components remain, and a reduced-Prosopsis treatment (rP), where Prosopis rather than Larrea is removed as the shrub dominant. Following treatments, vegetative data was collected by sampling each plot along three transects twice a year (Spring and Fall) for 5 years from 1997-2002 (no data collected in 1998). This data set consists of the date of collection, plot number, treatment type, transect number, quadrat number, species codes, two diameters, height, condition, count, record IDs, and error codes. This study is complete. 
    more » « less