skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Bicep/Keck XV: The Bicep3 Cosmic Microwave Background Polarimeter and the First Three-year Data Set
Abstract We report on the design and performance of the B icep3 instrument and its first three-year data set collected from 2016 to 2018. B icep3 is a 52 cm aperture refracting telescope designed to observe the polarization of the cosmic microwave background (CMB) on degree angular scales at 95 GHz. It started science observation at the South Pole in 2016 with 2400 antenna-coupled transition-edge sensor bolometers. The receiver first demonstrated new technologies such as large-diameter alumina optics, Zotefoam infrared filters, and flux-activated SQUIDs, allowing ∼10× higher optical throughput compared to the Keck design. B icep3 achieved instrument noise equivalent temperatures of 9.2, 6.8, and 7.1 μ K CMB s and reached Stokes Q and U map depths of 5.9, 4.4, and 4.4 μ K arcmin in 2016, 2017, and 2018, respectively. The combined three-year data set achieved a polarization map depth of 2.8 μ K arcmin over an effective area of 585 square degrees, which is the deepest CMB polarization map made to date at 95 GHz.  more » « less
Award ID(s):
1639040 1638957 1638970 1638978 1836010 2220445
PAR ID:
10330703
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; more » ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; ; « less
Date Published:
Journal Name:
The Astrophysical Journal
Volume:
927
Issue:
1
ISSN:
0004-637X
Page Range / eLocation ID:
77
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract SPT-3G is the third survey receiver operating on the South Pole Telescope dedicated to high-resolution observations of the cosmic microwave background (CMB). Sensitive measurements of the temperature and polarization anisotropies of the CMB provide a powerful data set for constraining cosmology. Additionally, CMB surveys with arcminute-scale resolution are capable of detecting galaxy clusters, millimeter-wave bright galaxies, and a variety of transient phenomena. The SPT-3G instrument provides a significant improvement in mapping speed over its predecessors, SPT-SZ and SPTpol. The broadband optics design of the instrument achieves a 430 mm diameter image plane across observing bands of 95, 150, and 220 GHz, with 1.2′ FWHM beam response at 150 GHz. In the receiver, this image plane is populated with 2690 dual-polarization, trichroic pixels (∼16,000 detectors) read out using a 68× digital frequency-domain multiplexing readout system. In 2018, SPT-3G began a multiyear survey of 1500 deg 2 of the southern sky. We summarize the unique optical, cryogenic, detector, and readout technologies employed in SPT-3G, and we report on the integrated performance of the instrument. 
    more » « less
  2. For the past decade, the BICEP/Keck collaboration has been operating a series of telescopes at the Amundsen-Scott South Pole Station measuring degree-scale B-mode polarization imprinted in the Cosmic Microwave Background (CMB) by primordial gravitational waves (PGWs). These telescopes are compact refracting polarimeters mapping about 2% of the sky, observing at a broad range of frequencies to account for the polarized foreground from Galactic synchrotron and thermal dust emission. Our latest publication "BK18" utilizes the data collected up to the 2018 observing season, in conjunction with the publicly available WMAP and Planck data, to constrain the tensor-to-scalar ratio r. It particularly includes (1) the 3-year BICEP3 data which is the current deepest CMB polarization map at the foreground-minimum 95 GHz; and (2) the Keck 220 GHz map with a higher signal-to-noise ratio on the dust foreground than the Planck 353 GHz map. We fit the auto- and cross-spectra of these maps to a multicomponent likelihood model (ΛCDM+dust+synchrotron+noise+r) and find it to be an adequate description of the data at the current noise level. The likelihood analysis yields σ(r)=0.009. The inference of r from our baseline model is tightened to r0.05=0.014+0.010−0.011 and r0.05<0.036 at 95% confidence, meaning that the BICEP/Keck B-mode data is the most powerful existing dataset for the constraint of PGWs. The up-coming BICEP Array telescope is projected to reach σ(r)≲0.003 using data up to 2027. 
    more » « less
  3. Abstract Measurement of the largest angular scale (ℓ< 30) features of the cosmic microwave background (CMB) polarization is a powerful way to constrain the optical depth to reionization and search for the signature of inflation through the detection of primordialB-modes. We present an analysis of maps covering 73.6% of the sky made from the 40 GHz channel of the Cosmology Large Angular Scale Surveyor (CLASS) from 2016 August to 2022 May. Taking advantage of the measurement stability enabled by front-end polarization modulation and excellent conditions from the Atacama Desert, we show this channel achieves higher sensitivity than the analogous frequencies from satellite measurements in the range 10 <ℓ< 100. Simulations show the CLASS linear (circular) polarization maps have a white noise level of 125 ( 130 ) μ K arcmin . We measure the Galaxy-maskedEEandBBspectra of diffuse synchrotron radiation and compare to space-based measurements at similar frequencies. In combination with external data, we expand measurements of the spatial variations of the synchrotron spectral energy density (SED) to include new sky regions and measure the diffuse SED in the harmonic domain. We place a new upper limit on a background of circular polarization in the range 5 <ℓ< 125 with the first bin showingD< 0.023 μ K CMB 2 at 95% confidence. These results establish a new standard for recovery of the largest-scale CMB polarization from the ground and signal exciting possibilities when the higher sensitivity and higher-frequency CLASS channels are included in the analysis. 
    more » « less
  4. Abstract The Cosmology Large Angular Scale Surveyor (CLASS) is a four-telescope array observing the largest angular scales (2≲ ℓ ≲ 200) of the cosmic microwave background (CMB) polarization. These scales encode information about reionization and inflation during the early universe. The instrument stability necessary to observe these angular scales from the ground is achieved through the use of a variable-delay polarization modulator as the first optical element in each of the CLASS telescopes. Here, we develop a demodulation scheme used to extract the polarization timestreams from the CLASS data and apply this method to selected data from the first 2 yr of observations by the 40 GHz CLASS telescope. These timestreams are used to measure the 1/ f noise and temperature-to-polarization ( T → P ) leakage present in the CLASS data. We find a median knee frequency for the pair-differenced demodulated linear polarization of 15.12 mHz and a T → P leakage of <3.8 × 10 −4 (95% confidence) across the focal plane. We examine the sources of 1/ f noise present in the data and find the component of 1/ f due to atmospheric precipitable water vapor (PWV) has an amplitude of 203 ± 12 μ K RJ s for 1 mm of PWV when evaluated at 10 mHz; accounting for ∼17% of the 1/ f noise in the central pixels of the focal plane. The low levels of T → P leakage and 1/ f noise achieved through the use of a front-end polarization modulator are requirements for observing of the largest angular scales of the CMB polarization by the CLASS telescopes. 
    more » « less
  5. Abstract We present measurements of large-scale cosmic microwave backgroundE-mode polarization from the Cosmology Large Angular Scale Surveyor 90 GHz data. Using 115 det-yr of observations collected through 2024 with a variable-delay polarization modulator, we achieved a polarization sensitivity of 82 μ K arcmin , comparable to Planck at similar frequencies (100 and 143 GHz ). The analysis demonstrates effective mitigation of systematic errors and addresses challenges to large-angular-scale power recovery posed by time-domain filtering in maximum-likelihood map-making. A novel implementation of the pixel-space transfer matrix is introduced, which enables efficient filtering simulations and bias correction in the power spectrum using the quadratic cross-spectrum estimator. Overall, we achieved an unbiased time-domain filtering correction to recover the largest angular scale polarization, with the only power deficit, arising from map-making nonlinearity, being characterized as <3%. Through cross-correlation with Planck, we detected the cosmic reionization at 99.4% significance and measured the reionization optical depth τ = 0.05 3 0.019 + 0.018 , marking the first ground-based attempt at such a measurement. At intermediate angular scales (ℓ > 30), our results, both independently and in cross-correlation with Planck, remain fully consistent with Planck’s measurements. 
    more » « less