skip to main content

Title: Microwave background temperature at a redshift of 6.34 from H2O absorption
Abstract Distortions of the observed cosmic microwave background provide a direct measurement of the microwave background temperature at redshifts from 0 to 1 (refs.  1,2 ). Some additional background temperature estimates exist at redshifts from 1.8 to 3.3 based on molecular and atomic line-excitation temperatures in quasar absorption-line systems, but are model dependent 3 . No deviations from the expected (1 +  z ) scaling behaviour of the microwave background temperature have been seen 4 , but the measurements have not extended deeply into the matter-dominated era of the Universe at redshifts z  > 3.3. Here we report observations of submillimetre line absorption from the water molecule against the cosmic microwave background at z  = 6.34 in a massive starburst galaxy, corresponding to a lookback time of 12.8 billion years (ref.  5 ). Radiative pumping of the upper level of the ground-state ortho-H 2 O(1 10 –1 01 ) line due to starburst activity in the dusty galaxy HFLS3 results in a cooling to below the redshifted microwave background temperature, after the transition is initially excited by the microwave background. This implies a microwave background temperature of 16.4–30.2 K (1 σ range) at z  = 6.34, which is consistent with a background temperature increase with more » redshift as expected from the standard ΛCDM cosmology 4 . « less
Authors:
; ; ; ; ; ;
Award ID(s):
1910107
Publication Date:
NSF-PAR ID:
10330916
Journal Name:
Nature
Volume:
602
Issue:
7895
Page Range or eLocation-ID:
58 to 62
ISSN:
0028-0836
Sponsoring Org:
National Science Foundation
More Like this
  1. ABSTRACT Cold Dark Matter with cosmological constant (ΛCDM) cosmological models with early dark energy (EDE) have been proposed to resolve tensions between the Hubble constant $H_0=100\, h$ km ṡ−1Ṁpc−1 measured locally, giving h ≈ 0.73, and H0 deduced from Planck cosmic microwave background (CMB) and other early-Universe measurements plus ΛCDM, giving h ≈ 0.67. EDE models do this by adding a scalar field that temporarily adds dark energy equal to about 10 per cent of the cosmological energy density at the end of the radiation-dominated era at redshift z ∼ 3500. Here, we compare linear and non-linear predictions of a Planck-normalized ΛCDM model including EDE giving h = 0.728 with those of standard Planck-normalized ΛCDM with h = 0.678. We find that non-linear evolution reduces the differences between power spectra of fluctuations at low redshifts. As a result, at z = 0 the halo mass functions on galactic scales are nearly the same, with differences only 1–2 per cent. However, the differences dramatically increase at high redshifts. The EDE model predicts 50 per cent more massive clusters at z = 1 and twice more galaxy-mass haloes at z = 4. Even greater increases in abundances of galaxy-mass haloes at higher redshifts may make it easier to reionize the universe with EDE. Predicted galaxymore »abundances and clustering will soon be tested by the James Webb Space Telescope (JWST) observations. Positions of baryonic acoustic oscillations (BAOs) and correlation functions differ by about 2 per cent between the models – an effect that is not washed out by non-linearities. Both standard ΛCDM and the EDE model studied here agree well with presently available acoustic-scale observations, but the Dark Energy Spectroscopic Instrument and Euclid measurements will provide stringent new tests.« less
  2. Abstract We report the detection of 23 OH + 1 → 0 absorption, emission, or P-Cygni-shaped lines and CO( J = 9→8) emission lines in 18 Herschel-selected z = 2–6 starburst galaxies with the Atacama Large Millimeter/submillimeter Array and the NOrthern Extended Millimeter Array, taken as part of the Gas And Dust Over cosmic Time Galaxy Survey. We find that the CO( J = 9→8) luminosity is higher than expected based on the far-infrared luminosity when compared to nearby star-forming galaxies. Together with the strength of the OH + emission components, this may suggest that shock excitation of warm, dense molecular gas is more prevalent in distant massive dusty starbursts than in nearby star-forming galaxies on average, perhaps due to an impact of galactic winds on the gas. OH + absorption is found to be ubiquitous in massive high-redshift starbursts, and is detected toward 89% of the sample. The majority of the sample shows evidence for outflows or inflows based on the velocity shifts of the OH + absorption/emission, with a comparable occurrence rate of both at the resolution of our observations. A small subsample appears to show outflow velocities in excess of their escape velocities. Thus, starburst-driven feedback appearsmore »to be important in the evolution of massive galaxies in their most active phases. We find a correlation between the OH + absorption optical depth and the dust temperature, which may suggest that warmer starbursts are more compact and have higher cosmic-ray energy densities, leading to more efficient OH + ion production. This is in agreement with a picture in which these high-redshift galaxies are “scaled-up” versions of the most intense nearby starbursts.« less
  3. Abstract Line intensity mapping (LIM) is emerging as a powerful technique to map the cosmic large-scale structure and to probe cosmology over a wide range of redshifts and spatial scales. We perform Fisher forecasts to determine the optimal design of wide-field ground-based millimeter-wavelength LIM surveys for constraining properties of neutrinos and light relics. We consider measuring the auto-power spectra of several CO rotational lines (from J = 2–1 to J = 6–5) and the [C ii ] fine-structure line in the redshift range of 0.25 < z < 12. We study the constraints with and without interloper lines as a source of noise in our analysis, and for several one-parameter and multiparameter extensions of ΛCDM. We show that LIM surveys deployable this decade, in combination with existing cosmic microwave background (CMB; primary) data, could achieve order-of-magnitude improvements over Planck constraints on N eff and M ν . Compared to next-generation CMB and galaxy surveys, a LIM experiment of this scale could achieve bounds that are a factor of ∼3 better than those forecasted for surveys such as EUCLID (galaxy clustering), and potentially exceed the constraining power of CMB-S4 by a factor of ∼1.5 and ∼3 for N eff and Mmore »ν , respectively. We show that the forecasted constraints are not substantially affected when enlarging the parameter space, and additionally demonstrate that such a survey could also be used to measure ΛCDM parameters and the dark energy equation of state exquisitely well.« less
  4. ABSTRACT We present a systematic investigation of physical conditions and elemental abundances in four optically thick Lyman-limit systems (LLSs) at z = 0.36–0.6 discovered within the cosmic ultraviolet baryon survey (CUBS). Because intervening LLSs at z < 1 suppress far-UV (ultraviolet) light from background QSOs, an unbiased search of these absorbers requires a near-UV-selected QSO sample, as achieved by CUBS. CUBS LLSs exhibit multicomponent kinematic structure and a complex mix of multiphase gas, with associated metal transitions from multiple ionization states such as C ii, C iii, N iii, Mg ii, Si ii, Si iii, O ii, O iii, O vi, and Fe ii absorption that span several hundred km s−1 in line-of-sight velocity. Specifically, higher column density components (log N(H i)/cm−2≳ 16) in all four absorbers comprise dynamically cool gas with $\langle T \rangle =(2\pm 1) \times 10^4\,$K and modest non-thermal broadening of $\langle b_\mathrm{nt} \rangle =5\pm 3\,$km s−1. The high quality of the QSO absorption spectra allows us to infer the physical conditions of the gas, using a detailed ionization modelling that takes into account the resolved component structures of H i and metal transitions. The range of inferred gas densities indicates that these absorbers consist of spatially compact clouds with a median line-of-sight thickness of $160^{+140}_{-50}$ pc. While obtaining robust metallicitymore »constraints for the low density, highly ionized phase remains challenging due to the uncertain $N\mathrm{(H\, {\small I})}$, we demonstrate that the cool-phase gas in LLSs has a median metallicity of $\mathrm{[\alpha /H]_{1/2}}=-0.7^{+0.1}_{-0.2}$, with a 16–84 percentile range of [α/H] = (−1.3, −0.1). Furthermore, the wide range of inferred elemental abundance ratios ([C/α], [N/α], and [Fe/α]) indicate a diversity of chemical enrichment histories. Combining the absorption data with deep galaxy survey data characterizing the galaxy environment of these absorbers, we discuss the physical connection between star-forming regions in galaxies and diffuse gas associated with optically thick absorption systems in the z < 1 circumgalactic medium.« less
  5. Abstract

    We present the discovery of neutral gas detected in both damped Lyαabsorption (DLA) and Hi21 cm emission outside of the stellar body of a galaxy, the first such detection in the literature. A joint analysis between the Cosmic Ultraviolet Baryon Survey and the MeerKAT Absorption Line Survey reveals an Hibridge connecting two interacting dwarf galaxies (log (Mstar/M) = 8.5 ± 0.2) that host az= 0.026 DLA with log[N(Hi)/cm−2] = 20.60 ± 0.05 toward the QSO J2339−5523 (zQSO= 1.35). At impact parameters ofd= 6 and 33 kpc, the dwarf galaxies have no companions more luminous than ≈0.05L*within at least Δv= ±300 km s−1andd≈ 350 kpc. The Hi21 cm emission is spatially coincident with the DLA at the 2σ–3σlevel per spectral channel over several adjacent beams. However, Hi21 cm absorption is not detected against the radio-bright QSO; if the background UV and radio sources are spatially aligned, the gas is either warm or clumpy (with a spin temperature to covering factor ratioTs/fc> 1880 K). Observations with VLT-MUSE demonstrate that theα-element abundance of the ionized interstellar medium (ISM) is consistent with the DLA (≈10% solar), suggesting that the neutral gas envelope is perturbed ISM gas. This study showcases the impact of dwarf–dwarfmore »interactions on the physical and chemical state of neutral gas outside of star-forming regions. In the SKA era, joint UV and Hi21 cm analyses will be critical for connecting the cosmic neutral gas content to galaxy environments.

    « less