skip to main content


Title: Negotiating Tensions in Collaborations and its Role in Disciplinary Engagement in Science
While recent reforms in science education envision engaging students in doing science as a way to learn science, less is known about how such an engagement can take hold in the classroom. In an effort to address this gap, this study examines the dynamics of students’ disciplinary engagement in small groups in a middle school science classroom. Using multimodal discourse analysis, we conducted a comparative case analysis of three groups of students to examine the dynamics of their engagement along conceptual, epistemological, social, and affective dimensions. Through this analysis, our findings highlight tensions that emerge along these dimensions and the ways in which students negotiate these tensions in ways that support or hinder disciplinary engagement.  more » « less
Award ID(s):
1720587
NSF-PAR ID:
10330973
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Annual meeting program American Educational Research Association
ISSN:
0163-9676
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. While conceptual uncertainties position students to engage in the disciplinary practices of science in meaningful ways, that engagement is dependent on how students respond to and manage such uncertainties. The current study examines various epistemological, social, and affective dynamics and how they influence the management of conceptual uncertainties in one group of middle school students in a science classroom. Using multimodal discourse analysis, we found that students’ persistence in disciplinary engagement is not only dependent on the presence and recognition of conceptual uncertainties but also on how students take up and manage challenges along epistemological, social, and affective dimensions. Our work can inform educators interested in supporting students to navigate the complex and multidimensional dynamics of collaborative sensemaking in service of promoting disciplinary engagement in science. 
    more » « less
  2. null (Ed.)
    Recent educational reforms conceptualize science classrooms as spaces where students collaboratively engage in disciplinary practices to construct and evaluate scientific explanations of phenomena. For students to effectively collaborate with each other, they need to develop a shared framing of the nature of the science activity and the expectations surrounding their engagement in it. Such framing does not only pertain to the conceptual work but also involves myriad epistemological, social, and affective dimensions. We conceptualize collaborative disciplinary engagement as the process of aligning the group’s framing along these dimensions and, we argue, student negotiations to achieve this alignment are in part what initiate and sustain collaborative disciplinary engagement in the science classroom. By focusing on student negotiations, this study builds on existing research on group dynamics involved in science learning and contributes nuanced empirical insights on the nature of student negotiations along the conceptual, epistemological, social, and affective dimensions of argumentation in science. Moreover, the findings provide a proof of concept regarding the key role that student negotiations of framing have in driving collaborative disciplinary engagement. The study findings have implications for research and practice to support learners’ productive disciplinary engagement in group work in the science classroom and beyond. 
    more » « less
  3. A variety of research studies reveal the advantages of actively engaging students in the learning process through collaborative work in the classroom. However, the complex nature of the learning environment in large college general chemistry courses makes it challenging to identify the different factors that affect students’ cognitive and social engagement while working on in-class tasks. To provide insights into this area, we took a closer look at students’ conversations during in-class activities to characterize typical discourse patterns and expressed chemical thinking in representative student groups in samples collected in five different learning environments across four universities. For this purpose, we adapted and applied a ‘Community of Learners’ (CoL) theoretical perspective to characterize group activity through the analysis of student discourse. Within a CoL perspective, the extent to which a group functions as a community of learners is analyzed along five dimensions including Community of Discourse (CoD), Legitimization of Differences (LoD), Building on Ideas (BoI), Reflective Learning (RL), and Community of Practice (CoP). Our findings make explicit the complexity of analyzing student engagement in large active learning environments where a multitude of variables can affect group work. These include, among others, group size and composition, the cognitive level of the tasks, the types of cognitive processes used to complete tasks, and the motivation and willingness of students to substantively engage in disciplinary reasoning. Our results point to important considerations in the design and implementation of active learning environments that engage more students with chemical ideas at higher levels of reasoning. 
    more » « less
  4. A variety of research studies reveal the advantages of actively engaging students in the learning process through collaborative work in the classroom. However, the complex nature of the learning environment in large college general chemistry courses makes it challenging to identify the different factors that affect students’ cognitive and social engagement while working on in-class tasks. To provide insights into this area, we took a closer look at students’ conversations during in-class activities to characterize typical discourse patterns and expressed chemical thinking in representative student groups in samples collected in five different learning environments across four universities. For this purpose, we adapted and applied a ‘Community of Learners’ (CoL) theoretical perspective to characterize group activity through the analysis of student discourse. Within a CoL perspective, the extent to which a group functions as a community of learners is analyzed along five dimensions including Community of Discourse (CoD), Legitimization of Differences (LoD), Building on Ideas (BoI), Reflective Learning (RL), and Community of Practice (CoP). Our findings make explicit the complexity of analyzing student engagement in large active learning environments where a multitude of variables can affect group work. These include, among others, group size and composition, the cognitive level of the tasks, the types of cognitive processes used to complete tasks, and the motivation and willingness of students to substantively engage in disciplinary reasoning. Our results point to important considerations in the design and implementation of active learning environments that engage more students with chemical ideas at higher levels of reasoning. 
    more » « less
  5. Abstract

    Recent instructional reforms in science education aim to change the way students engage in learning in the discipline, as they describe that students are to engage with disciplinary core ideas, crosscutting concepts, and the practices of science to make sense of phenomena (NRC, 2012). For such sensemaking to become a reality, there is a need to understand the ways in which students' thinking can be maintained throughout the trajectory of science lessons. Past research in this area tends to foreground either the curriculum or teachers' practices. We propose a more comprehensive view of science instruction, one that requires attention to teachers' practice, the instructional task, and students' engagement. In this study, by examining the implementation of the same lesson across three different classrooms, our analysis of classroom videos and artifacts of students' work revealed how the interaction of teachers' practices, students' intellectual engagement, and a cognitively demanding task together support rigorous instruction. Our analyses shed light on their interaction that shapes opportunities for students' thinking and sensemaking throughout the trajectory of a science lesson. The findings provide implications for ways to promote rigorous opportunities for students' learning in science classrooms.

     
    more » « less