skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Vortex breakdown in variable-density gaseous swirling jets
Theoretical predictions and numerical simulations are used to determine the transition to bubble and conical vortex breakdown in low-Mach-number laminar axisymmetric variable-density swirling jets. A critical value of the swirl number $$S$$ for the onset of the bubble ( $$S^*_B$$ ) and the cone ( $$S^*_C$$ ) is determined as the jet-to-ambient density ratio $$\varLambda$$ is varied, with the temperature dependence of the gas density and viscosity appropriate to that of air. The criterion of failure of the slender quasi-cylindrical approximation predicts $$S^*_B$$ that decreases with increasing values of $$\varLambda$$ for a jet in solid-body rotation emerging sharply into a quiescent atmosphere. In addition, a new criterion for the onset of conical breakdown is derived from divergence of the initial value of the radial spreading rate of the jet occurring at $$S^*_C$$ , found to be independent of $$\varLambda$$ , in an asymptotic analysis for small distances from the inlet plane. To maintain stable flow in the unsteady numerical simulations, an effective Reynolds number $$Re_{eff}$$ , defined employing the geometric mean of the viscosity in the jet and ambient atmosphere, is fixed at $$Re_{eff}=200$$ for all $$\varLambda$$ . Similar to the theoretical predictions, numerical calculations of $$S^*_B$$ decrease monotonically as $$\varLambda$$ is increased. The critical swirl numbers for the cone, $$S^*_C$$ , are found to depend strongly on viscous effects; for $$\varLambda =1/5$$ , the low jet Reynolds number (51) at $$Re_{eff}=200$$ delays the transition to the cone, while for $$\varLambda =5$$ at $$Re_{eff}=200$$ , the large increase in kinematic viscosity in the external fluid produces a similar trend, significantly increasing $$S^*_C$$ .  more » « less
Award ID(s):
1916979
PAR ID:
10330993
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Journal of Fluid Mechanics
Volume:
936
ISSN:
0022-1120
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We study the emergence of precessing vortex core (PVC) oscillations in a swirling jet experiment. We vary the swirl intensity while keeping the net mass flow rate fixed using a radial-entry swirler with movable blades upstream of the jet exit. The swirl intensity is quantified in terms of a swirl number $$S$$ . Time-resolved velocity measurements in a radial–axial plane anchored at the jet exit for various $$S$$ values are obtained using stereoscopic particle image velocimetry. Spectral proper orthogonal decomposition and spatial cross-spectral analysis reveal the simultaneous emergence of a bubble-type vortex breakdown and a strong helical limit-cycle oscillation in the flow for $$S>S_{c}$$ where $$S_{c}=0.61$$ . The oscillation frequency, $$f_{PVC}$$ , and the square of the flow oscillation amplitudes vary linearly with $$S-S_{c}$$ . A solution for the coherent unsteady field accurate up to $$O(\unicode[STIX]{x1D716}^{3})$$ ( $$\unicode[STIX]{x1D716}\sim O((S-S_{c})^{1/2})$$ ) is determined from the nonlinear Navier–Stokes equations, using the method of multiple scales. We show that onset of bubble type vortex breakdown at $$S_{c}$$ , results in a marginally stable, helical linear global hydrodynamic mode. This results in the stable limit-cycle precession of the breakdown bubble. The variation of $$f_{LC}$$ with $$S-S_{c}$$ is determined from the Stuart–Landau equation associated with the PVC. Reasonable agreement with the corresponding experimental result is observed, despite the highly turbulent nature of the flow in the present experiment. Further, amplitude saturation results from the time-averaged distortion imposed on the flow by the PVC, suggesting that linear stability analysis may predict PVC characteristics for $$S>S_{c}$$ . 
    more » « less
  2. A bstract This article presents differential measurements of the asymmetry between $$ {\varLambda}_b^0 $$ Λ b 0 and $$ {\overline{\varLambda}}_b^0 $$ Λ ¯ b 0 baryon production rates in proton-proton collisions at centre-of-mass energies of $$ \sqrt{s} $$ s = 7 and 8 TeV collected with the LHCb experiment, corresponding to an integrated luminosity of 3 fb − 1 . The $$ {\varLambda}_b^0 $$ Λ b 0 baryons are reconstructed through the inclusive semileptonic decay $$ {\varLambda}_b^0 $$ Λ b 0 → $$ {\varLambda}_c^{+} $$ Λ c + μ − $$ \overline{\nu} $$ ν ¯ μ X . The production asymmetry is measured both in intervals of rapidity in the range 2 . 15 < y < 4 . 10 and transverse momentum in 2 < p T < 27 GeV/ c . The results are found to be incompatible with symmetric production with a significance of 5.8 standard deviations for both $$ \sqrt{s} $$ s = 7 and 8 TeV data, assuming no CP violation in the decay. There is evidence for a trend as a function of rapidity with a significance of 4 standard deviations. Comparisons to predictions from hadronisation models in P ythia and heavy-quark recombination are provided. This result constitutes the first observation of a particle-antiparticle asymmetry in b -hadron production at LHC energies. 
    more » « less
  3. null (Ed.)
    This paper investigates the steady axisymmetric structure of the cold boundary-layer flow surrounding fire whirls developing over localized fuel sources lying on a horizontal surface. The inviscid swirling motion found outside the boundary layer, driven by the entrainment of the buoyant turbulent plume of hot combustion products that develops above the fire, is described by an irrotational solution, obtained by combining Taylor's self-similar solution for the motion in the axial plane with the azimuthal motion induced by a line vortex of circulation $$2 {\rm \pi}\Gamma$$ . The development of the boundary layer from a prescribed radial location is determined by numerical integration for different swirl levels, measured by the value of the radial-to-azimuthal velocity ratio $$\sigma$$ at the initial radial location. As in the case $$\sigma =0$$ , treated in the seminal boundary-layer analysis of Burggraf et al. ( Phys. Fluids , vol. 14, 1971, pp. 1821–1833), the pressure gradient associated with the centripetal acceleration of the inviscid flow is seen to generate a pronounced radial inflow. Specific attention is given to the terminal shape of the boundary-layer velocity near the axis, which displays a three-layered structure that is described by matched asymptotic expansions. The resulting composite expansion, dependent on the level of ambient swirl through the parameter $$\sigma$$ , is employed as boundary condition to describe the deflection of the boundary-layer flow near the axis to form a vertical swirl jet. Numerical solutions of the resulting non-slender collision region for different values of $$\sigma$$ are presented both for inviscid flow and for viscous flow with moderately large values of the controlling Reynolds number $$\Gamma /\nu$$ . The velocity description provided is useful in mathematical formulations of localized fire-whirl flows, providing consistent boundary conditions accounting for the ambient swirl level. 
    more » « less
  4. We perform direct numerical simulations of a gas bubble dissolving in a surrounding liquid. The bubble volume is reduced due to dissolution of the gas, with the numerical implementation of an immersed boundary method, coupling the gas diffusion and the Navier–Stokes equations. The methods are validated against planar and spherical geometries’ analytical moving boundary problems, including the classic Epstein–Plesset problem. Considering a bubble rising in a quiescent liquid, we show that the mass transfer coefficient $$k_L$$ can be described by the classic Levich formula $$k_L = (2/\sqrt {{\rm \pi} })\sqrt {\mathscr {D}_l\,U(t)/d(t)}$$ , with $d(t)$ and $U(t)$ the time-varying bubble size and rise velocity, and $$\mathscr {D}_l$$ the gas diffusivity in the liquid. Next, we investigate the dissolution and gas transfer of a bubble in homogeneous and isotropic turbulence flow, extending Farsoiya et al. ( J. Fluid Mech. , vol. 920, 2021, A34). We show that with a bubble size initially within the turbulent inertial subrange, the mass transfer coefficient in turbulence $$k_L$$ is controlled by the smallest scales of the flow, the Kolmogorov $$\eta$$ and Batchelor $$\eta _B$$ microscales, and is independent of the bubble size. This leads to the non-dimensional transfer rate $${Sh}=k_L L^\star /\mathscr {D}_l$$ scaling as $${Sh}/{Sc}^{1/2} \propto {Re}^{3/4}$$ , where $${Re}$$ is the macroscale Reynolds number $${Re} = u_{rms}L^\star /\nu _l$$ , with $$u_{rms}$$ the velocity fluctuations, $L^*$ the integral length scale, $$\nu _l$$ the liquid viscosity, and $${Sc}=\nu _l/\mathscr {D}_l$$ the Schmidt number. This scaling can be expressed in terms of the turbulence dissipation rate $$\epsilon$$ as $${k_L}\propto {Sc}^{-1/2} (\epsilon \nu _l)^{1/4}$$ , in agreement with the model proposed by Lamont & Scott ( AIChE J. , vol. 16, issue 4, 1970, pp. 513–519) and corresponding to the high $Re$ regime from Theofanous et al. ( Intl J. Heat Mass Transfer , vol. 19, issue 6, 1976, pp. 613–624). 
    more » « less
  5. Geophysical flows occur over a large range of scales, with Reynolds numbers and Richardson numbers varying over several orders of magnitude. For this study, jets of different densities were ejected vertically into a large ambient region, considering conditions relevant to some geophysical phenomena. Using particle image velocimetry, the velocity fields were measured for three different gases exhausting into air – specifically helium, air and argon. Measurements focused on both the jet core and the entrained ambient. Experiments considered relatively low Reynolds numbers from approximately 1500 to 10 000 with Richardson numbers near 0.001 in magnitude. These included a variety of flow responses, notably a nearly laminar jet, turbulent jets and a transitioning jet in between. Several features were studied, including the jet development, the local entrainment ratio, the turbulent Reynolds stresses and the eddy strength. Compared to a fully turbulent jet, the transitioning jet showed up to 50 % higher local entrainment and more significant turbulent fluctuations. For this condition, the eddies were non-axisymmetric and larger than the exit radius. For turbulent jets, the eddies were initially smaller and axisymmetric while growing with the shear layer. At lower turbulent Reynolds number, the turbulent stresses were more than 50 % higher than at higher turbulent Reynolds number. In either case, the low-density jet developed faster than a comparable non-buoyant jet. Quadrant analysis and proper orthogonal decomposition were also utilized for insight into the entrainment of the jet, as well as to assess the energy distribution with respect to the number of eigenmodes. Reynolds shear stresses were dominant in Q1 and Q3 and exhibited negligible contributions from the remaining two quadrants. Both analysis techniques showed that the development of stresses downstream was dependent on the Reynolds number while the spanwise location of the stresses depended on the Richardson number. 
    more » « less