skip to main content

This content will become publicly available on March 18, 2023

Title: Terrain effects on the 13 April 2018 Mountainburg, Arkansas EF2 tornado
Storm-scale interactions with rough terrain are complex. Terrain has been theorized to impact the strength of low-level mesocyclones. Surface roughness and modifications of the surrounding environment also may impact tornadogenesis or tornado intensity. The Mountainburg, Arkansas EF2 tornado on 13 April 2018 traveled along a path with minor variations in intensity and elevation throughout most of the nearly 19-km (11.8 mi) damage path as the storm moved along a river valley. A detailed damage survey showed that the tornado then made an abrupt ascent of more than 200 m (656 ft) in the last 2 km (1.2 mi) before dissipating. By examining model soundings and conducting a detailed terrain analysis, this study examines what role terrain may have had in channeling the momentum surge and enhancing the low-level vorticity to influence tornadogenesis. Other storm-scale factors are investigated to determine their potential impact on the demise of the tornado. The differential reflectivity column is studied to determine if the updraft was weakening. The relative position of the tornado and mesocyclone also are examined as the tornado ascended the terrain and dissipated to determine whether the change in elevation impacted the overall strength of the storm and to evaluate whether the storm more » was undergoing a traditional occlusion cycle. Finally, a large-eddy simulation model is used to explore physical changes in a tornado encountering terrain similar to the Mountainburg, Arkansas, tornado near its demise. « less
Authors:
Award ID(s):
1823478 2114817
Publication Date:
NSF-PAR ID:
10331008
Journal Name:
Journal of operational meteorology
Volume:
10
Issue:
2
Page Range or eLocation-ID:
18 - 29
ISSN:
2325-6184
Sponsoring Org:
National Science Foundation
More Like this
  1. Recent research suggests that surface elevation variability may influence tornado activity, though separating this effect from reporting biases is difficult to do in observations. Here we employ Bayes’s law to calculate the empirical joint dependence of tornado probability on population density and elevation roughness in the vicinity of Arkansas for the period 1955–2015. This approach is based purely on data, exploits elevation and population information explicitly in the vicinity of each tornado, and enables an explicit test of the dependence of results on elevation roughness length scale. A simple log-link linear regression fit to this empirical distribution yields an 11% decrease in tornado probability per 10-m increase in elevation roughness at fixed population density for large elevation roughness length scales (15–20 km). This effect increases by at least a factor of 2 moving toward smaller length scales down to 1 km. The elevation effect exhibits no time trend, while the population bias effect decreases systematically in time, consistent with the improvement of reporting practices. Results are robust across time periods and the exclusion of EF1 tornadoes and are consistent with recent county-level and gridded analyses. This work highlights the need for a deeper physical understanding of how elevation heterogeneity affectsmore »tornadogenesis and also provides the foundation for a general Bayesian tornado probability model that integrates both meteorological and nonmeteorological parameters.

    « less
  2. Abstract A sample of 198 supercells are investigated to determine if a radar proxy for the area of the storm midlevel updraft may be a skillful predictor of imminent tornado formation and/or peak tornado intensity. A novel algorithm, a modified version of the Thunderstorm Risk Estimation from Nowcasting Development via Size Sorting (TRENDSS) algorithm is used to estimate the area of the enhanced differential radar reflectivity factor (Z DR ) column in Weather Surveillance Radar – 1988 Doppler data; the Z DR column area is used as a proxy for the area of the midlevel updraft. The areas of Z DR columns are compared for 154 tornadic supercells and 44 non-tornadic supercells, including 30+ supercells with tornadoes rated EF1, EF2, and EF3; nine supercells with EF4+ tornadoes also are analyzed. It is found that (i) at the time of their peak 0-1 km azimuthal shear, non-tornadic supercells have consistently small (< 20 km 2 ) Z DR column areas while tornadic cases exhibit much greater variability in areas, and (ii) at the time of tornadogenesis, EF3+ tornadic cases have larger Z DR column areas than tornadic cases rated EF1/2. In addition, all nine violent tornadoes sampled have Z DR columnmore »areas > 30 km 2 at the time of tornadogenesis. However, only weak positive correlation is found between Z DR column area and both radar-estimated peak tornado intensity and maximum tornado path width. Planned future work focused on mechanisms linking updraft size and tornado formation and intensity is summarized and the use of the modified TRENDSS algorithm, which is immune to Z DR bias and thus ideal for real-time operational use, is emphasized.« less
  3. Abstract Rapid-scan polarimetric data analysis of the dissipation of a likely violent supercell tornado that struck near Sulphur, Oklahoma, on 9 May 2016 is presented. The Rapid X-band Polarimetric Radar was used to obtain data of the tornado at the end of its mature phase and during its entire dissipation phase. The analysis is presented in two parts: dissipation characteristics of the tornadic vortex signature (TVS) associated with the tornado and storm-scale polarimetric features that may be related to processes contributing to tornado dissipation. The TVS exhibited near-surface radial velocities exceeding 100 m s−1 multiple times at the end of its mature phase, and then underwent a two-phased dissipation. Initially, decreases in near-surface intensity occurred rapidly over a ~5-min period followed by a slower decline in intensity that lasted an additional ~12 min. The dissipation of the TVS in time and height in the lowest 2 km above radar level and oscillatory storm-relative motion of the TVS also are discussed. Using polarimetric data, a well-defined low reflectivity ribbon is investigated for its vertical development, evolution, and relationship to the large tornadic debris signature (TDS) collocated with the TVS. The progression of the TDS during dissipation also is discussed with amore »focus on the presence of several bands of reduced copolar correlation coefficient that extend away from the main TDS and the eventual erosion of the TDS as the tornado dissipated. Finally, TVS and polarimetric data are combined to argue for the importance of a possible internal rear-flank downdraft momentum surge in contributing to the initial rapid dissipation of the tornado.« less
  4. Abstract The response of severe local storms to environmental evolution across the early evening transition (EET) remains a forecasting challenge, particularly within the context of the Southeast US storm climatology, which includes the increased presence of low-CAPE environments and tornadic non-supercell modes. To disentangle these complex environmental interactions, Southeast severe convective reports spanning 2003-2018 are temporally binned relative to local sunset. Sounding-derived data corresponding to each report are used to characterize how the near-storm environment evolves across the EET, and whether these changes influence the mode, frequency, and tornadic likelihood of their associated storms. High-shear, high-CAPE (HSHC) environments are contrasted with high-shear, low-CAPE (HSLC) environments to highlight physical processes governing storm maintenance and tornadogenesis in the absence of large instability. Lastly, statistical analysis is performed to determine which aspects of the near-storm environment most effectively discriminate between tornadic (or significantly tornadic) and nontornadic storms towards constructing new sounding-derived forecast guidance parameters for multiple modal and environmental combinations. Results indicate that HSLC environments evolve differently than HSHC environments, particularly for non-supercell (e.g., quasi-linear convective system) modes. These low-CAPE environments sustain higher values of low-level shear and storm-relative helicity (SRH) and destabilize post-sunset – potentially compensating for minimal buoyancy. Furthermore, the existencemore »of HSLC storm environments pre-sunset increases the likelihood of non-supercellular tornadoes post-sunset. Existing forecast guidance metrics such as the significant tornado parameter (STP) remain the most skillful predictors of HSHC tornadoes. However, HSLC tornado prediction can be improved by considering variables like precipitable water, downdraft CAPE, and effective inflow base.« less
  5. Abstract A supercell produced a nearly tornadic vortex during an intercept by the Second Verification of the Origins of Rotation in Tornadoes Experiment on 26 May 2010. Using observations from two mobile radars performing dual-Doppler scans, a five-probe mobile mesonet, and a proximity sounding, factors that prevented this vortex from strengthening into a significant tornado are examined. Mobile mesonet observations indicate that portions of the supercell outflow possessed excessive negative buoyancy, likely owing in part to low boundary layer relative humidity, as indicated by a high environmental lifted condensation level. Comparisons to a tornadic supercell suggest that the Prospect Valley storm had enough far-field circulation to produce a significant tornado, but was unable to converge this circulation to a sufficiently small radius. Trajectories suggest that the weak convergence might be due to the low-level mesocyclone ingesting parcels with considerable crosswise vorticity from the near-storm environment, which has been found to contribute to less steady and weaker low-level updrafts in supercell simulations. Yet another factor that likely contributed to the weak low-level circulation was the inability of parcels rich in streamwise vorticity from the forward-flank precipitation region to reach the low-level mesocyclone, likely owing to an unfavorable pressure gradient force field.more »In light of these results, we suggest that future research should continue focusing on the role of internal, storm-scale processes in tornadogenesis, especially in marginal environments.« less