skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, September 13 until 2:00 AM ET on Saturday, September 14 due to maintenance. We apologize for the inconvenience.


Title: Tornado Formation and Intensity Prediction Using Polarimetric Radar Estimates of Updraft Area
Abstract A sample of 198 supercells are investigated to determine if a radar proxy for the area of the storm midlevel updraft may be a skillful predictor of imminent tornado formation and/or peak tornado intensity. A novel algorithm, a modified version of the Thunderstorm Risk Estimation from Nowcasting Development via Size Sorting (TRENDSS) algorithm is used to estimate the area of the enhanced differential radar reflectivity factor (Z DR ) column in Weather Surveillance Radar – 1988 Doppler data; the Z DR column area is used as a proxy for the area of the midlevel updraft. The areas of Z DR columns are compared for 154 tornadic supercells and 44 non-tornadic supercells, including 30+ supercells with tornadoes rated EF1, EF2, and EF3; nine supercells with EF4+ tornadoes also are analyzed. It is found that (i) at the time of their peak 0-1 km azimuthal shear, non-tornadic supercells have consistently small (< 20 km 2 ) Z DR column areas while tornadic cases exhibit much greater variability in areas, and (ii) at the time of tornadogenesis, EF3+ tornadic cases have larger Z DR column areas than tornadic cases rated EF1/2. In addition, all nine violent tornadoes sampled have Z DR column areas > 30 km 2 at the time of tornadogenesis. However, only weak positive correlation is found between Z DR column area and both radar-estimated peak tornado intensity and maximum tornado path width. Planned future work focused on mechanisms linking updraft size and tornado formation and intensity is summarized and the use of the modified TRENDSS algorithm, which is immune to Z DR bias and thus ideal for real-time operational use, is emphasized.  more » « less
Award ID(s):
1748177 1748191
NSF-PAR ID:
10320172
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Weather and Forecasting
ISSN:
0882-8156
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Supercell thunderstorms produce a variety of hazards, including tornadoes. A supercell will often exist for some time prior to producing a tornado, while other supercells never become tornadic. In this study, a series of hypotheses is tested regarding the ability of S-band polarimetric radar fields to distinguish pretornadic from nontornadic supercell storms. Several quantified polarimetric radar metrics are examined that are related to storm inflow, updraft, and hailfall characteristics in samples of 19–30 pretornadic and 18–31 nontornadic supercells. The results indicate that pretornadic supercells are characterized by smaller hail extent and echo appendages with larger mean drop size. Additionally, differential reflectivity ZDRcolumn size is larger and less variable in the pretornadic storms in the 25–30 min prior to initial tornadogenesis. Many of the results indicate relatively small polarimetric differences that will likely be difficult to translate to operational use. Hail extent and ZDRcolumn size, however, may exhibit operationally useful differences between pretornadic and nontornadic supercells.

     
    more » « less
  2. null (Ed.)
    Abstract The time preceding supercell tornadogenesis and tornadogenesis “failure” has been studied extensively to identify differing attributes related to tornado production or lack thereof. Studies from the Verification of the Origins of Rotation in Tornadoes Experiment (VORTEX) found that air in the rear-flank downdraft (RFD) regions of non- and weakly tornadic supercells had different near-surface thermodynamic characteristics than that in strongly tornadic supercells. Subsequently, it was proposed that microphysical processes are likely to have an impact on the resulting thermodynamics of the near-surface RFD region. One way to view proxies to microphysical features, namely drop size distributions (DSDs), is through use of polarimetric radar data. Studies from the second VORTEX used data from dual-polarization radars to provide evidence of different DSDs in the hook echoes of tornadic and non-tornadic supercells. However, radar-based studies during these projects were limited to a small number of cases preventing result generalizations. This study compiles 68 tornadic and 62 non-tornadic supercells using Weather Surveillance Radar–1988 Doppler (WSR-88D) data to analyze changes in polarimetric radar variables leading up to, and at, tornadogenesis and tornadogenesis failure. Case types generally did not show notable hook echo differences in variables between sets, but did show spatial hook echo quadrant DSD differences. Consistent with past studies, differential radar reflectivity factor (Z DR ) generally decreased leading up to tornadogenesis and tornadogenesis failure; in both sets, estimated total number concentration increased during the same times. Relationships between DSDs and the near-storm environment, and implications of results for nowcasting tornadogenesis, also are discussed. 
    more » « less
  3. Abstract

    Polarimetric radar data from the WSR-88D network are used to examine the evolution of various polarimetric precursor signatures to tornado dissipation within a sample of 36 supercell storms. These signatures include an increase in bulk hook echo median raindrop size, a decrease in midlevel differential radar reflectivity factor (ZDR) column area, a decrease in the magnitude of theZDRarc, an increase in the area of low-level large hail, and a decrease in the orientation angle of the vector separating low-levelZDRand specific differential phase (KDP) maxima. Only supercells that produced “long-duration” tornadoes (with at least four consecutive volumes of WSR-88D data) are investigated, so that signatures can be sufficiently tracked in time, and novel algorithms are used to isolate each storm-scale process. During the time leading up to tornado dissipation, we find that hook echo median drop size (D0) and medianZDRremain relatively constant, but hook echo medianKDPand estimated number concentration (NT) increase. TheZDRarc maximum magnitude andZDRKDPseparation orientation angles are observed to decrease in most dissipation cases. Neither the area of large hail nor theZDRcolumn area exhibit strong signals leading up to tornado dissipation. Finally, combinations of storm-scale behaviors and TVS behaviors occur most frequently just prior to tornado dissipation, but also are common 15–20 min prior to dissipation. The results from this study provide evidence that nowcasting tornado dissipation using dual-polarization radar may be possible when combined with TVS monitoring, subject to important caveats.

     
    more » « less
  4. Abstract It has long been observed that interactions of a supercell with other storms or storm-scale boundaries sometimes seem to directly instigate tornadogenesis. First, the authors explore the frequency of such constructive interactions. WSR-88D radar data are used to categorize 136 tornadic supercells into isolated supercells and supercells that interacted with external factors within 20 min before tornadogenesis. Most cases (80%) showed some form of external influence prior to tornadogenesis. Common patterns of interactions, the typical supercell quadrant that is affected, and changes in azimuthal shear are also identified. To further study these interactions, two sets of idealized CM1 simulations are performed. The first set demonstrates that the speed of the near-ground horizontal flow relative to the updraft can control whether a vortex patch develops into a tornado. A weaker updraft-relative flow is favorable because the developing vortex stays in the updraft region longer and becomes less tilted. Building on these results, it is shown that external outflow can lead to tornado formation by a deceleration of the updraft-relative flow. The deceleration is caused by the pressure gradient force associated with the external outflow, which is already noticeable several kilometers ahead of the outflow boundary. This offers another possible mechanism by which external outflow can act as a catalyst for supercell tornadogenesis. 
    more » « less
  5. null (Ed.)
    Abstract Some supercellular tornado outbreaks are composed almost entirely of tornadic supercells, while most consist of both tornadic and nontornadic supercells sometimes in close proximity to each other. These differences are related to a balance between larger-scale environmental influences on storm development as well as more chaotic, internal evolution. For example, some environments may be potent enough to support tornadic supercells even if less predictable intrastorm characteristics are suboptimal for tornadogenesis, while less potent environments are supportive of tornadic supercells given optimal intrastorm characteristics. This study addresses the sensitivity of tornadogenesis to both environmental characteristics and storm-scale features using a cloud modeling approach. Two high-resolution ensembles of simulated supercells are produced in the near- and far-field environments observed in the inflow of tornadic supercells during the second Verification of the Origins of Rotation in Tornadoes Experiment (VORTEX2). All simulated supercells evolving in the near-field environment produce a tornado, and 33% of supercells evolving in the far-field environment produce a tornado. Composite differences between the two ensembles are shown to address storm-scale characteristics and processes impacting the volatility of tornadogenesis. Storm-scale variability in the ensembles is illustrated using empirical orthogonal function analysis, revealing storm-generated boundaries that may be linked to the volatility of tornadogenesis. Updrafts in the near-field ensemble are markedly stronger than those in the far-field ensemble during the time period in which the ensembles most differ in terms of tornado production. These results suggest that storm-environment modifications can influence the volatility of supercellular tornadogenesis. 
    more » « less