skip to main content

Title: Ant Communities and Ecosystem Services in Organic Versus Conventional Agriculture in the U.S. Corn Belt
Abstract Reducing the use of synthetic fertilizers and pesticides can limit negative impacts of agriculture on insects and is a crucial step towards sustainable agriculture. In the United States, organic agriculture has the potential to reduce greenhouse gas emissions, pollutant runoff, and biodiversity loss in the Midwestern Corn Belt—an area extending over 500,000 km2 devoted to intensive production of corn Zea mays (Linnaeus 1753) (Poales: Poaceae), often in rotation with soy Glycine max (Linnaeus 1753) (Fabales: Fabaceae) or wheat Triticum aestivum (Linnaeus 1753) (Poales: Poaceae). Working in 30-yr-long landscape experiments in this region, we tested for impacts of conventional versus organic agriculture on ant communities (Hymenoptera: Formicidae) and potential ecosystem services they provide. Organic fields supported higher ant diversity and a slightly more species-rich ant assemblage than conventionally managed fields but did not otherwise differ in community composition. Despite similar community composition, organic and conventional fields differed in seasonal patterns of ant foraging activity and potential for natural pest suppression. Conventional plots experienced higher overall ant foraging activity, but with the timing skewed towards late in the growing season such that 75% of ant foraging occurred after crop harvest in a wheat year and was therefore unavailable for pest suppression. more » Organic fields, in contrast, experienced moderate levels of ant foraging activity throughout the growing season, with most foraging occurring during crop growth. Organic fields thus supported twice as much pest suppression potential as conventional fields. Our results highlight the importance of timing in mediating ecosystem services in croplands and emphasize the value of managing landscapes for multiple services rather than yield alone. « less
; ; ; ;
Schmidt-Jeffris, Rebecca A
Award ID(s):
Publication Date:
Journal Name:
Environmental Entomology
Page Range or eLocation-ID:
1276 to 1285
Sponsoring Org:
National Science Foundation
More Like this
  1. Background Landscape composition is known to affect both beneficial insect and pest communities on crop fields. Landscape composition therefore can impact ecosystem (dis)services provided by insects to crops. Though landscape effects on ecosystem service providers have been studied in large-scale agriculture in temperate regions, there is a lack of representation of tropical smallholder agriculture within this field of study, especially in sub-Sahara Africa. Legume crops can provide important food security and soil improvement benefits to vulnerable agriculturalists. However, legumes are dependent on pollinating insects, particularly bees (Hymenoptera: Apiformes) for production and are vulnerable to pests. We selected 10 pigeon pea (Fabaceae: Cajunus cajan (L.)) fields in Malawi with varying proportions of semi-natural habitat and agricultural area within a 1 km radius to study: (1) how the proportion of semi-natural habitat and agricultural area affects the abundance and richness of bees and abundance of florivorous blister beetles (Coleoptera: Melloidae ), (2) if the proportion of flowers damaged and fruit set difference between open and bagged flowers are correlated with the proportion of semi-natural habitat or agricultural area and (3) if pigeon pea fruit set difference between open and bagged flowers in these landscapes was constrained by pest damage or improved bymore »bee visitation. Methods We performed three, ten-minute, 15 m, transects per field to assess blister beetle abundance and bee abundance and richness. Bees were captured and identified to (morpho)species. We assessed the proportion of flowers damaged by beetles during the flowering period. We performed a pollinator and pest exclusion experiment on 15 plants per field to assess whether fruit set was pollinator limited or constrained by pests. Results In our study, bee abundance was higher in areas with proportionally more agricultural area surrounding the fields. This effect was mostly driven by an increase in honeybees. Bee richness and beetle abundances were not affected by landscape characteristics, nor was flower damage or fruit set difference between bagged and open flowers. We did not observe a positive effect of bee density or richness, nor a negative effect of florivory, on fruit set difference. Discussion In our study area, pigeon pea flowers relatively late—well into the dry season. This could explain why we observe higher densities of bees in areas dominated by agriculture rather than in areas with more semi-natural habitat where resources for bees during this time of the year are scarce. Therefore, late flowering legumes may be an important food resource for bees during a period of scarcity in the seasonal tropics. The differences in patterns between our study and those conducted in temperate regions highlight the need for landscape-scale studies in areas outside the temperate region.« less
  2. Abstract
    Excessive phosphorus (P) applications to croplands can contribute to eutrophication of surface waters through surface runoff and subsurface (leaching) losses. We analyzed leaching losses of total dissolved P (TDP) from no-till corn, hybrid poplar (Populus nigra X P. maximowiczii), switchgrass (Panicum virgatum), miscanthus (Miscanthus giganteus), native grasses, and restored prairie, all planted in 2008 on former cropland in Michigan, USA. All crops except corn (13 kg P ha−1 year−1) were grown without P fertilization. Biomass was harvested at the end of each growing season except for poplar. Soil water at 1.2 m depth was sampled weekly to biweekly for TDP determination during March–November 2009–2016 using tension lysimeters. Soil test P (0–25 cm depth) was measured every autumn. Soil water TDP concentrations were usually below levels where eutrophication of surface waters is frequently observed (> 0.02 mg L−1) but often higher than in deep groundwater or nearby streams and lakes. Rates of P leaching, estimated from measured concentrations and modeled drainage, did not differ statistically among cropping systems across years; 7-year cropping system means ranged from 0.035 to 0.072 kg P ha−1 year−1 with large interannual variation. Leached P was positively related to STP, which decreased over the 7 years in all systems. These results indicate that both P-fertilized and unfertilized cropping systems mayMore>>
  3. As urban areas expand around the world, there are growing efforts to restore and protect natural and agricultural systems for the multitude of ecosystem services they provide to urban communities. This study presents a researcher-farmer collaboration in a highly urbanized area of Oʻahu focused on understanding the historical and current challenges and opportunities faced by a culturally and socially valued spring-dependent urban farm, Sumida Farm, which produces the majority of the state of Hawaiʻi’s watercress. We conducted a long-term trend analysis (25 years) of factors identified by the farmers to be important historical drivers of crop yield, including groundwater pumping, pest outbreaks, temperature, Oceanic Niño Index, and precipitation. We combined this analysis with a year of intensive spring water sampling on the farm to evaluate nutrient and contaminant composition and flow to understand water-related stressors, as well as evaluate the potential of the farm to provide nutrient retention services. We found negative correlations between historical crop yields and increases in the Oceanic Niño Index, temperature thresholds, and pest outbreaks. Despite the surrounding urbanization, we found on-farm water quality to be very high, and microbial analyses revealed an abundance of denitrifiers (nirS gene) suggesting that the farm provides a nutrient retentionmore »service to downstream systems. Finally, we found that socio-cultural values including heritage value, aesthetic value, and educational value are increasingly important for the Sumida family and surrounding community. These socio-cultural benefits alongside highly valued local food production and nutrient retention services are essential for continued community and political support. Collectively, our study demonstrates that challenges facing urban agricultural systems shift through time, and that recognition of the beyond crop-yield benefits of these systems to urban communities is essential to their long-term survival.« less
  4. Accurate monitoring of crop condition is critical to detect anomalies that may threaten the economic viability of agriculture and to understand how crops respond to climatic variability. Retrievals of soil moisture and vegetation information from satellite-based remote-sensing products offer an opportunity for continuous and affordable crop condition monitoring. This study compared weekly anomalies in accumulated gross primary production (GPP) from the SMAP Level-4 Carbon (L4C) product to anomalies calculated from a state-scale weekly crop condition index (CCI) and also to crop yield anomalies calculated from county-level yield data reported at the end of the season. We focused on barley, spring wheat, corn, and soybeans cultivated in the continental United States from 2000 to 2018. We found that consistencies between SMAP L4C GPP anomalies and both crop condition and yield anomalies increased as crops developed from the emergence stage (r: 0.4–0.7) and matured (r: 0.6–0.9) and that the agreement was better in drier regions (r: 0.4–0.9) than in wetter regions (r: −0.8–0.4). The L4C provides weekly GPP estimates at a 1-km scale, permitting the evaluation and tracking of anomalies in crop status at higher spatial detail than metrics based on the state-level CCI or county-level crop yields. We demonstrate that themore »L4C GPP product can be used operationally to monitor crop condition with the potential to become an important tool to inform decision-making and research.« less
  5. Crop rotations are known to improve soil health by replenishing lost nutrients, increasing organic matter, improving microbial activity, and reducing disease risk and weed pressure. We characterized the spatial distribution of crops and dominant field-scale cropping sequences from 2008 to 2019 for the Wisconsin Central Sands (WCS) region, a major producer of potato and vegetables in the U.S. The dominant two- and three-year rotations were determined, with an additional focus on assessing regional potato rotation management. Our results suggest corn and soybean are the two most widely planted crops, occurring on 67% and 36% of all agricultural land at least once during the study period. The most frequent two- and three-year crop rotations include corn, soybean, alfalfa, sweet corn, potato, and beans, with continuous corn being the most dominant two- and three-year rotations (13.2% and 8.5% of agricultural land, respectively). While four- and five-year rotations for potato are recommended to combat pest and disease pressure, 23.2% and 65.9% of potato fields returned to that crop in rotation after two and three years, respectively. Furthermore, 5.6% of potato fields were planted continuously with that crop. Given potato’s high nitrogen (N) fertilizer requirements, the prevalence of sandy soils, and ongoing water qualitymore »issues, adopting more widespread use of four- or five-year rotations of potato with crops that require zero or less N fertilizer could reduce groundwater nitrate concentrations and improve water quality.« less