skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Breaking baryon-cosmology degeneracy with the electron density power spectrum
Abstract Uncertain feedback processes in galaxies affect the distribution of matter, currently limiting the power of weak lensing surveys. If we can identify cosmological statistics that are robust against these uncertainties, or constrain these effects by other means, then we can enhance the power of current and upcoming observations from weak lensing surveys such as DES, Euclid, the Rubin Observatory, and the Roman Space Telescope. In this work, we investigate the potential of the electron density auto-power spectrum as a robust probe of cosmology and baryonic feedback. We use a suite of (magneto-)hydrodynamic simulations from the CAMELS project and perform an idealized analysis to forecast statistical uncertainties on a limited set of cosmological and physically-motivated astrophysical parameters. We find that the electron number density auto-correlation, measurable through either kinematic Sunyaev-Zel'dovich observations or through Fast Radio Burst dispersion measures, provides tight constraints on Ω m and the mean baryon fraction in intermediate-mass halos, f̅ bar . By obtaining an empirical measure for the associated systematic uncertainties, we find these constraints to be largely robust to differences in baryonic feedback models implemented in hydrodynamic simulations. We further discuss the main caveats associated with our analysis, and point out possible directions for future work.  more » « less
Award ID(s):
2108944
PAR ID:
10331320
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Journal of Cosmology and Astroparticle Physics
Volume:
2022
Issue:
04
ISSN:
1475-7516
Page Range / eLocation ID:
046
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Modifications of the matter power spectrum due to baryonic physics are one of the major theoretical uncertainties in cosmological weak lensing measurements. Developing robust mitigation schemes for this source of systematic uncertainty increases the robustness of cosmological constraints, and may increase their precision if they enable the use of information from smaller scales. Here we explore the performance of two mitigation schemes for baryonic effects in weak lensing cosmic shear: the principal component analysis (PCA) method and the halo-model approach in hmcode. We construct mock tomographic shear power spectra from four hydrodynamical simulations, and run simulated likelihood analyses with cosmolike assuming LSST-like survey statistics. With an angular scale cut of ℓmax < 2000, both methods successfully remove the biases in cosmological parameters due to the various baryonic physics scenarios, with the PCA method causing less degradation in the parameter constraints than hmcode. For a more aggressive ℓmax = 5000, the PCA method performs well for all but one baryonic physics scenario, requiring additional training simulations to account for the extreme baryonic physics scenario of Illustris; hmcode exhibits tensions in the 2D posterior distributions of cosmological parameters due to lack of freedom in describing the power spectrum for $$k \gt 10\ h^{-1}\, \mathrm{Mpc}$$. We investigate variants of the PCA method and improve the bias mitigation through PCA by accounting for the noise properties in the data via Cholesky decomposition of the covariance matrix. Our improved PCA method allows us to retain more statistical constraining power while effectively mitigating baryonic uncertainties even for a broad range of baryonic physics scenarios. 
    more » « less
  2. ABSTRACT Extracting precise cosmology from weak lensing surveys requires modelling the non-linear matter power spectrum, which is suppressed at small scales due to baryonic feedback processes. However, hydrodynamical galaxy formation simulations make widely varying predictions for the amplitude and extent of this effect. We use measurements of Dark Energy Survey Year 3 weak lensing (WL) and Atacama Cosmology Telescope DR5 kinematic Sunyaev–Zel’dovich (kSZ) to jointly constrain cosmological and astrophysical baryonic feedback parameters using a flexible analytical model, ‘baryonification’. First, using WL only, we compare the $$S_8$$ constraints using baryonification to a simulation-calibrated halo model, a simulation-based emulator model, and the approach of discarding WL measurements on small angular scales. We find that model flexibility can shift the value of $$S_8$$ and degrade the uncertainty. The kSZ provides additional constraints on the astrophysical parameters, with the joint WL + kSZ analysis constraining $$S_8=0.823^{+0.019}_{-0.020}$$. We measure the suppression of the non-linear matter power spectrum using WL + kSZ and constrain a mean feedback scenario that is more extreme than the predictions from most hydrodynamical simulations. We constrain the baryon fractions and the gas mass fractions and find them to be generally lower than inferred from X-ray observations and simulation predictions. We conclude that the WL + kSZ measurements provide a new and complementary benchmark for building a coherent picture of the impact of gas around galaxies across observations. 
    more » « less
  3. In the age of large-scale galaxy and lensing surveys, such as DESI, Euclid, Roman, and Rubin, we stand poised to usher in a transformative new phase of data-driven cosmology. To fully harness the capabilities of these surveys, it is critical to constrain the poorly understood influence of baryon feedback physics on the matter power spectrum. We investigate the use of a powerful and novel cosmological probe, fast radio bursts (FRBs), to capture baryonic effects on the matter power spectrum, leveraging simulations from the Cosmology and Astrophysics with MachinE Learning Simulations (or CAMELS) project, including IllustrisTNG, SIMBA, and Astrid. We find that FRB statistics exhibit a strong correlation, independent of the subgrid model and cosmology, with quantities known to encapsulate baryonic impacts on the matter power spectrum, such as baryon spread and the halo baryon fraction. We propose an innovative method utilizing FRB observations to quantify the effects of feedback physics and enhance weak-lensing measurements of S8. We outline the necessary steps to prepare for the imminent detection of large FRB populations in the coming years, focusing on understanding the redshift evolution of FRB observables and mitigating the effects of cosmic variance. 
    more » « less
  4. Abstract In the age of large-scale galaxy and lensing surveys, such as DESI, Euclid, Roman, and Rubin, we stand poised to usher in a transformative new phase of data-driven cosmology. To fully harness the capabilities of these surveys, it is critical to constrain the poorly understood influence of baryon feedback physics on the matter power spectrum. We investigate the use of a powerful and novel cosmological probe, fast radio bursts (FRBs), to capture baryonic effects on the matter power spectrum, leveraging simulations from the Cosmology and Astrophysics with MachinE Learning Simulations (or CAMELS) project, including IllustrisTNG, SIMBA, and Astrid. We find that FRB statistics exhibit a strong correlation, independent of the subgrid model and cosmology, with quantities known to encapsulate baryonic impacts on the matter power spectrum, such as baryon spread and the halo baryon fraction. We propose an innovative method utilizing FRB observations to quantify the effects of feedback physics and enhance weak-lensing measurements ofS8. We outline the necessary steps to prepare for the imminent detection of large FRB populations in the coming years, focusing on understanding the redshift evolution of FRB observables and mitigating the effects of cosmic variance. 
    more » « less
  5. ABSTRACT We use the small scales of the Dark Energy Survey (DES) Year-3 cosmic shear measurements, which are excluded from the DES Year-3 cosmological analysis, to constrain the baryonic feedback. To model the baryonic feedback, we adopt a baryonic correction model and use the numerical package baccoemu to accelerate the evaluation of the baryonic non-linear matter power spectrum. We design our analysis pipeline to focus on the constraints of the baryonic suppression effects, utilizing the implication given by a principal component analysis on the Fisher forecasts. Our constraint on the baryonic effects can then be used to better model and ameliorate the effects of baryons in producing cosmological constraints from the next-generation large-scale structure surveys. We detect the baryonic suppression on the cosmic shear measurements with a ∼2σ significance. The characteristic halo mass for which half of the gas is ejected by baryonic feedback is constrained to be $$M_c \gt 10^{13.2} \, h^{-1} \, \mathrm{M}_{\odot }$$ (95 per cent C.L.). The best-fitting baryonic suppression is $$\sim 5{{\ \rm per\ cent}}$$ at $$k=1.0 \, {\rm Mpc}\ h^{-1}$$ and $$\sim 15{{\ \rm per\ cent}}$$ at $$k=5.0 \, {\rm Mpc} \ h^{-1}$$. Our findings are robust with respect to the assumptions about the cosmological parameters, specifics of the baryonic model, and intrinsic alignments. 
    more » « less