skip to main content

Title: Seeds don’t sink: even massive black hole ‘seeds’ cannot migrate to galaxy centres efficiently
ABSTRACT Possible formation scenarios of supermassive black holes (BHs) in the early universe include rapid growth from less massive seed BHs via super-Eddington accretion or runaway mergers, yet both of these scenarios would require seed BHs to efficiently sink to and be trapped in the Galactic Centre via dynamical friction. This may not be true for their complicated dynamics in clumpy high-z galaxies. In this work, we study this ‘sinking problem’ with state-of-the-art high-resolution cosmological simulations, combined with both direct N-body integration of seed BH trajectories and post-processing of randomly generated test particles with a newly developed dynamical friction estimator. We find that seed BHs less massive than $10^8\, \mathrm{M}_\odot$ (i.e. all but the already-supermassive seeds) cannot efficiently sink in typical high-z galaxies. We also discuss two possible solutions: dramatically increasing the number of seeds such that one seed can end up trapped in the Galactic Centre by chance, or seed BHs being embedded in dense structures (e.g. star clusters) with effective masses above the mass threshold. We discuss the limitations of both solutions.  more » « less
Award ID(s):
2009687 2108230 1715216
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
Monthly Notices of the Royal Astronomical Society
Page Range / eLocation ID:
1973 to 1985
Medium: X
Sponsoring Org:
National Science Foundation
More Like this

    Massive black holes in the centres of galaxies today must have grown by several orders of magnitude from seed black holes formed at early times. Detecting a population of intermediate mass black holes (IMBHs) can provide constraints on these elusive BH seeds. Here, we use the large volume cosmological hydrodynamical simulation Astrid, which includes IMBH seeds and dynamical friction to investigate the population of IMBH seeds. Dynamical friction is largely inefficient at sinking and merging seed IMBHs at high-z. This leads to an extensive population (several hundred per galaxy) of wandering IMBHs in large haloes at $z\sim 2$. A small fraction of these IMBHs are detectable as HLXs, Hyper Luminous X-ray sources. Importantly, at $z\sim 2$, IMBHs mergers produce the peak of GW events. We find close to a million GW events in Astrid between $z=\rm{2\!-\!3}$ involving seed IMBH mergers. These GW events (almost all detectable by LISA) at cosmic noon should provide strong constraints on IMBH seed models and their formation mechanisms. At the centre of massive galaxies, where the number of IMBHs can be as high as 10–100, SMBH-IMBH pairs can form. These Intermediate mass ratio inspirals (IMRIs) and extreme mass ratio inspirals (EMRIs), will require the next generation of milli-$\mu$Hz space-based GW interferometers to be detected. Large populations of IMBHs around massive black holes will probe their environments and MBH causal structure.

    more » « less
  2. Abstract

    The origins and mergers of supermassive black holes (SMBHs) remain a mystery. We describe a scenario from a novel multiphysics simulation featuring rapid (≲1 Myr) hyper-Eddington gas capture by a ∼1000M“seed” black hole (BH) up to supermassive (≳106M) masses in a massive, dense molecular cloud complex typical of high-redshift starbursts. Due to the high cloud density, stellar feedback is inefficient, and most of the gas turns into stars in star clusters that rapidly merge hierarchically, creating deep potential wells. Relatively low-mass BH seeds at random positions can be “captured” by merging subclusters and migrate to the center in ∼1 freefall time (vastly faster than dynamical friction). This also efficiently produces a paired BH binary with ∼0.1 pc separation. The centrally concentrated stellar density profile (akin to a “protobulge”) allows the cluster as a whole to capture and retain gas and build up a large (parsec-scale) circumbinary accretion disk with gas coherently funneled to the central BH (even when the BH radius of influence is small). The disk is “hypermagnetized” and “flux-frozen”: dominated by a toroidal magnetic field with plasmaβ∼ 10−3, with the fields amplified by flux-freezing. This drives hyper-Eddington inflow rates ≳1Myr−1, which also drive the two BHs to nearly equal masses. The late-stage system appears remarkably similar to recently observed high-redshift “little red dots.” This scenario can provide an explanation for rapid SMBH formation, growth, and mergers in high-redshift galaxies.

    more » « less
  3. Abstract The James Webb Space Telescope (JWST) will have the sensitivity to detect early low-mass black holes (BHs) as they transition from “seeds” to supermassive BHs. Based on the JAGUAR mock catalog of galaxies, we present a clean color selection that takes advantage of the unique UV slope of accreting supermassive BHs with a relatively low mass and high accretion rates. We show that those galaxies hosting ∼10 6 M ⊙ BHs radiating at >10% of their Eddington luminosity separate in color space from inactive systems for a range of host stellar masses. Here we propose a set of 3-band, 2-color selection boxes (with 90% completeness; 90% purity; balanced purity/completeness) with JWST/NIRCam to identify the most promising growing BH candidates at z ∼ 7–10. 
    more » « less

    In the near future, projects like Laser Interferometer Space Antenna (LISA) and pulsar timing arrays are expected to detect gravitational waves from mergers between supermassive black holes, and it is crucial to precisely model the underlying merger populations now to maximize what we can learn from this new data. Here, we characterize expected high-redshift (z > 2) black hole mergers using the very large volume Astrid cosmological simulation, which uses a range of seed masses to probe down to low-mass black holes (BHs), and directly incorporates dynamical friction so as to accurately model the dynamical processes that bring black holes to the galaxy centre where binary formation and coalescence will occur. The black hole populations in Astrid include black holes down to $\sim 10^{4.5} \, \mathrm{M}_\odot$, and remain broadly consistent with the TNG simulations at scales $\gt 10^6 \, \mathrm{M}_\odot$ (the seed mass used in TNG). By resolving lower mass black holes, the overall merger rate is ∼5× higher than in TNG. However, incorporating dynamical friction delays mergers compared to a recentring scheme, reducing the high-z merger rate mass-matched mergers by a factor of ∼2×. We also calculate the expected LISA signal-to-noise values, and show that the distribution peaks at high SNR (>100), emphasizing the importance of implementing a seed mass well below LISA’s peak sensitivity ($\sim 10^6 \, \mathrm{M}_\odot$) to resolve the majority of LISA’s gravitational wave detections.

    more » « less
  5. null (Ed.)
    The existence of ∼10 9 M ⊙ supermassive black holes (SMBHs) within the first billion years of the Universe has stimulated numerous ideas for the prompt formation and rapid growth of black holes (BHs) in the early Universe. Here, we review ways in which the seeds of massive BHs may have first assembled, how they may have subsequently grown as massive as ∼10 9 M ⊙ , and how multimessenger observations could distinguish between different SMBH assembly scenarios. We conclude the following: ▪  The ultrarare ∼10 9 M ⊙ SMBHs represent only the tip of the iceberg. Early BHs likely fill a continuum from the stellar-mass (∼10M ⊙ ) to the supermassive (∼10 9 ) regimes, reflecting a range of initial masses and growth histories. ▪  Stellar-mass BHs were likely left behind by the first generation of stars at redshifts as high as ∼30, but their initial growth typically was stunted due to the shallow potential wells of their host galaxies. ▪  Conditions in some larger, metal-poor galaxies soon became conducive to the rapid formation and growth of massive seed holes, via gas accretion and by mergers in dense stellar clusters. ▪  BH masses depend on the environment (such as the number and properties of nearby radiation sources and the local baryonic streaming velocity) and on the metal enrichment and assembly history of the host galaxy. ▪  Distinguishing between assembly mechanisms will be difficult, but a combination of observations by the Laser Interferometer Space Antenna (probing massive BH growth via mergers) and by deep multiwavelength electromagnetic observations (probing growth via gas accretion) is particularly promising. 
    more » « less