skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Properties of Neutron Star Crust with Improved Nuclear Physics: Impact of Chiral EFT Interactions and Experimental Nuclear Masses
Award ID(s):
2020275
PAR ID:
10331365
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Few-Body Systems
Volume:
62
Issue:
4
ISSN:
0177-7963
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Chromatin is an essential component of nuclear mechanical response and shape that maintains nuclear compartmentalization and function. However, major genomic functions, such as transcription activity, might also impact cell nuclear shape via blebbing and rupture through their effects on chromatin structure and dynamics. To test this idea, we inhibited transcription with several RNA polymerase II inhibitors in wild type cells and perturbed cells that present increased nuclear blebbing. Transcription inhibition suppresses nuclear blebbing for several cell types, nuclear perturbations, and transcription inhibitors. Furthermore, transcription inhibition suppresses nuclear bleb formation, bleb stabilization, and bleb-based nuclear ruptures. Interestingly, transcription inhibition does not alter either H3K9 histone modification state, nuclear rigidity, or actin compression and contraction, which typically control nuclear blebbing. Polymer simulations suggest that RNA pol II motor activity within chromatin could drive chromatin motions that deform the nuclear periphery. Our data provide evidence that transcription inhibition suppresses nuclear blebbing and rupture, separate and distinct from chromatin rigidity. 
    more » « less
  2. Abstract Nuclear spin optical rotation (NSOR) has been investigated as a magneto‐optical effect, which holds the potential for applications, including hybrid optical‐nuclear magnetic resonance (NMR) spectroscopy and gradientless imaging. The intrinsic nature of NSOR renders its detection relatively insensitive, which has prevented it moving from a proof of concept to a method supporting chemical characterizations. In this work, the dissolution dynamic nuclear polarization technique is introduced to provide nuclear spin polarization, increasing the signal‐to‐noise ratio by several thousand times. NSOR signals of1H and19F nuclei are observed in a single scan for diluted compounds, which has made this effect suitable for the determination of electronic transitions from a specific nucleus in a large molecule. 
    more » « less
  3. Two meters of DNA in each of our cells must be protected against many types of damage. Mechanoprotection is increasingly understood to be conferred by the nuclear lamina of intermediate filament proteins, but very different patterns of expression and regulation between different cells and tissues remain a challenge to comprehend and translate into applications. We begin with a tutorial style presentation of “tissue blueprints” of lamin expression including single-cell RNA sequencing in major public datasets. Lamin-A, C profiles appear strikingly similar to those for the mechanosensitive factors Vinculin, Yap1, and Piezo1, whereas datasets for lamin-B1 align with and predict regulation by the cell cycle transcription factor, FOXM1, and further predict poor survival across multiple cancers. Various experiments support the distinction between the lamin types and add mechanistic insight into the mechano-regulation of lamin-A, C by both matrix elasticity and externally imposed tissue strain. Both A- and B-type lamins, nonetheless, protect the nucleus from rupture and damage. Ultimately, for mechanically active tissue constructs and organoids as well as cell therapies, lamin levels require particular attention as they help minimize nuclear damage and defects in a cell cycle. 
    more » « less